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ABSTRACT 
 

Offsite airport facilities provide ground transportation, baggage and passenger check in, 
and other transportation services to departing air passengers from a remote location.  They were 
introduced in the United States in the 1950s but did not achieve widespread use.  In recent years, 
interest has been revived in this airport access option because of changes in technology, land use, 
and air travel conditions.  However, potential demand for new offsite terminals is not fully 
understood.  The purpose of this study was to develop models for this research need, which is to 
determine the airports that might be candidates for an offsite facility and estimate the percentage 
of travelers that would choose an offsite facility to access the airport.   
 

Offsite airport facility operations were examined in New York, Los Angeles, Zurich, 
London, and Hong Kong, and passenger data were obtained from surveys distributed at six U.S. 
airports.  A total of 1,700 air-traveler questionnaires were completed at four airports without 
offsite facilities, i.e., Baltimore/Washington International Thurgood Marshall Airport (BWI), 
Charlottesville-Albemarle Airport (CHO), Norfolk International Airport (ORF), and Richmond 
International Airport (RIC), and at two airports with offsite facilities that provide ground 
transportation only, i.e., Boston Logan International Airport (BOS) and San Francisco 
International Airport (SFO).  The survey results show that 68% of passengers who traveled 
directly to the airport terminal would consider using an offsite airport facility if available.  Of the 
passengers who currently use an offsite airport facility that provides only ground transportation, 
almost 70% indicated that their access would be improved by expanded services including 
baggage and passenger check in.  The two main reasons cited for using the offsite airport 
facilities surveyed in this study were reduced travel time variability (43%) and lower cost (39%).   
 

With the data collected at the six airports, two models were developed sequentially to 
determine the demand for offsite facilities.  The airport access quality model was used to 
establish initial demand by assuming that the likelihood of a viable offsite facility is directly 
proportional to the difficulty, or resistance, encountered during the current access trip to the 
airport.  This model yielded expected results when tested with a former offsite airport facility.  
The offsite facility usage model was used to determine the probability of passengers using an 
offsite facility while accessing an airport and accurately estimated 58% of the test set responses.  
 

The airport access quality model develops a value for total resistance and ranks the 
airports according to the current difficulty encountered by passengers during their access trip to 
the airport.  When applied to three Virginia airports, passengers accessing RIC had the largest 
total resistance.  Accordingly, RIC is considered to have the highest potential demand for an 
offsite facility.   
 

The offsite airport facility usage model was based on flight departure time and variability 
in ground travel time as predictors of the final demand.  For example, the model estimated an 
offsite airport facility demand of 74% for passengers departing between 8 and 10:30 A.M. when 
ground travel times vary by 45 min (rounded to the nearest 15-min interval).  For passengers 
departing before 8:00 A.M. and with a ground travel time that varies by no more than 5 min, the 
models estimated demand at only 26%.  The offsite airport facility usage model was also used to 
identify the zones (defined by zip codes) where potential use of offsite terminals is substantial.  
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INTRODUCTION 
 

Options to improve the quality of airport landside access may include expanding existing 
terminals, widening access roads, constructing new parking facilities, adding curbside drop 
off/pick up areas (Shriner and Hoel, 1999), and providing operational enhancements such as the 
use of cell phone lots for drivers picking up passengers.  Another option for improving airport 
landside access is an offsite airport passenger service facility, which serves an airport and its 
users by providing ground transportation to and from the main terminal, baggage handling, check 
in, and passenger information.  A previous report (Volume I) (Goswami et al., 2008) provided 
information about the concept, history, and current operations of various types of offsite airport 
facilities.  This report (Volume II) addresses how to estimate demand for offsite airport facilities.  
 

Offsite facilities were first examined in the United States during the early 1950s (Mansel 
and Mandle, 2000).  Most of the remote facilities that initially provided check-in service either 
have been vacated or serve only as limousine pick-up and drop-of points (Air Transport 
Association of America, 1976).  Previous studies focused on determining a suitable location for 
such offsite facilities (Kanafani, 1971; Spliseth, 1971); determining the desirability of offsite 
facilities to improve airport access (Leder, 1970); analyzing the cost-effectiveness of offsite 
facilities as a means of relieving groundside congestion in major hub cities (Snell, 1971); and 
conducting a feasibility evaluation of the Marin Airporter offsite facility (Gosling and Novak, 
1980).  The last source (Gosling and Novak, 1980) estimated the proportion of passengers using 
an offsite facility based on the ratio of travel time directly to the airport and travel time using the 
offsite facility. 
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Increasing landside congestion at major airports has renewed interest in the use of offsite 
facilities (Gosling, 1987).  Yet many of the previous studies evaluated offsite facilities that 
existed before1980.  Since that time, passenger characteristics have changed (Goswami et al., 
2008) and some offsite facilities have closed or modified their services (Berger, 1985; Gosling, 
1994, 1997; Sebro, 2007).  Through the use of models based on survey data collected at six U.S. 
airports, this study addressed the passenger demand for offsite facilities in the present context.   
 
 

PROBLEM STATEMENT 
 

One problem faced by transportation planners is that no modern methods to forecast 
demand for an airport offsite passenger service facility are available.  Without such methods, 
offsite facilities will lack a process for evaluation and decision making, hindering applications 
that may be beneficial. 
 
 

PURPOSE AND SCOPE 
 

The purpose of this study was to develop, calibrate, and test an approach for estimating 
demand for airport offsite passenger service facilities.  Demand was defined as the probability 
that passengers will choose to use an offsite facility.  The approach was limited to passenger 
characteristics such as travel time to the airport, flight departure time (FDT), and the cost of the 
access trip.  Factors other than passenger demand that could influence the viability of an offsite 
facility, such as the impact of airport parking revenue by introducing offsite terminals (Sherry, 
2007), were beyond the scope of this study.   
 

The study focused only on offsite airport facilities used by the departing air passenger, 
and data gathering efforts were limited to airports where permission to implement surveys was 
granted.  
 
 

METHODOLOGY 
 
 Four tasks comprised the methodology: 
 

1. A literature review identified suitable performance measures for offsite facilities. 
 
2. Data were collected to determine departing air passenger characteristics. 

 
3. The data from Task 2 and the variables identified in Task 1 were used to develop 

airport access quality models for use in forecasting airports that were likely 
candidates for locating an offsite facility. 

 
4. The data from Task 2 were used to develop offsite facility usage models that estimate 

the percentage of passengers likely to use an offsite facility at a specific airport and to 
identify promising market segments.  
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Task 1: Identify Performance Measures for Facilities 
 

The literature review was summarized in Volume I of this study (Goswami et al., 2008).   
Information about airport access was also obtained through web-based keyword searches, the 
WorldCat database, the VDOT Research Library, and libraries at the University of Virginia.   
 

The results of the literature review were used to identify passenger performance measures 
that reflected passenger viewpoints rather than performance measures that reflect the viewpoints 
of airport owners or airlines.  Examples of the former are (1) delay during the airport access trip 
(Mahmassani et al., 2002); (2) congestion at the curbside (Mahmassani et al., 2001); and (3) 
uncertain ground access times attributable to highway congestion (Cambridge Systematics Inc., 
2004).  Examples of performance measures that reflect the viewpoints of airport owners are the 
lack of landside access capacity (Ndoh and Ashford, 1993) and impacts on the environment (e.g., 
air emissions) (Airport Land Use Commission, 2005; Gray-Mullen, 2000). 
 

Based on the metrics applicable to passengers, five quantifiable performance measures 
were selected that are likely to reflect the overall quality of the access trip and the percentage of 
passengers using an offsite airport facility.  
 
 

Task 2: Determine Air Passenger Characteristics 
 
Data Collection 
 

Passenger travel data were obtained by a survey of departing passengers and direct 
observations at the following airports where permission had been granted:  
 

1. Charlottesville-Albemarle Airport (CHO), Charlottesville, Virginia 
2. Norfolk International Airport (ORF), Norfolk, Virginia 
3. Baltimore/Washington International Thurgood Marshall Airport (BWI), Baltimore, 

Maryland 
4. Richmond International Airport (RIC), Richmond, Virginia 
5. Boston Logan International Airport (BOS), Boston, Massachusetts 
6. San Francisco International Airport (SFO), San Francisco, California. 

 
In Charlottesville, Norfolk, Baltimore, and Richmond, surveys were conducted within the 

airport terminal.  A booth was established, and departing air passengers were requested to 
complete a survey (as shown in Appendix A).  The surveys were conducted over a 2-day period 
in 2006 on the following dates: June 15 and 16 (CHO), June 26 and 27 (ORF), August 3 and 4 
(RIC), and August 8 and September 8 (BWI). 

 
At Boston and San Francisco, surveys were distributed on buses that provide 

transportation to the airport from different offsite airport facilities that provide ground 
transportation only (as shown in Appendix B).  (Volume I of this study [Goswami et al., 2008} 
described seven categories of offsite facilities, and because BOS and SFO provide ground 
transportation only, they are classified as a Category VI facility as noted in Table 1 of Volume I.)  
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The BOS surveys were conducted September 18-19, 2006, and the SFO surveys were conducted 
February 5-7, 2007. 
 

The surveys provided the following data: 
 

• origin in the region (zip code) 
• arrival time at airport 
• scheduled flight departure time (FDT) 
• ground travel time to airport 
• perceived variability in ground travel time 
• mode to access to airport 
• cost of ground travel to the airport 
• cost of flight ticket. 

 
At Charlottesville, Norfolk, Baltimore, and Richmond, in addition to surveys, passenger 

processing times were collected manually at the terminal.  At each airport, two or three data 
collectors were equipped with stop watches, data entry sheets, or a laptop and provided with a 
clear view of the queue and the check-in counter.  Each data collector independently recorded the 
time a passenger entered the queue, the time the passenger reached the counter, and the time the 
passenger left the counter.   Observations at each airport were made at different times in a day 
and at different check-in queues for a period of 2 days to identify the variation in processing 
times.  Two data elements were collected: wait time in the queue prior to check in and service 
time at the check-in counter. 
 
 Average values of security checkpoint wait times were obtained from the Transportation 
Security Agency (TSA) website (TSA, 2007).  Individual values could not be collected as 
permission was denied to collect data pertaining to security checkpoint times at the terminal. 
 
Data Tabulation 
 

The basis for survey tabulation of passenger time characteristics were based on the 
following elements as illustrated in Figure 1 (not to scale). 
 

• Pre-flight time:  time difference between when passengers leave for the airport and 
the scheduled boarding time 

 
• Flight time: time difference between the airport scheduled departure and the 

scheduled arrival time at the destination airport 
 
• Destination airport travel time: summation of pre-flight time and flight time 
 
• Ground travel time: time taken to travel from origin to the airport terminal 
 
• Processing time: summation of queue (waiting) time and service time at the check-in  

counter 
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Figure 1.  Components of Air Passengers’ Destination Airport Travel Time 
 

 
• Non-airport activity time:  time spent at the terminal while not engaged in a specific 

airport/airline procedure 
 

─ Non-airport activity time = Non-airport activity timea + Non-airport activity timeb  
(data pertaining to non-airport activity timea were not collected) 

 
─ Non-airport activity timea: time taken by the passenger to traverse from the terminal 

door to the check-in queue 
 
─ Non-airport activity timeb: time spent by the passenger at the terminal after clearing 

security and prior to boarding the flight. 
 
In addition to the average values and variation in these travel time components, three other types 
of information were extracted from the survey: passengers’ willingness to use an offsite facility 
where none existed, passengers’ reason for using the facility if one did exist, and originating zip 
code of the passenger.  The zip codes served to identify areas with a high departing air passenger 
concentration.   
 
Missing Data 
 
 The surveys were not always fully completed by respondents. Accordingly, a pairwise 
deletion process was used to address missing data as appropriate.  For example, if a survey 
respondent provided ground travel time, distance to the airport, and access mode but omitted 
access cost, those computations that required the use of an access cost variable did not included 
this survey response.  If, however, a regression analysis as described in Task 3 was performed 
where ground travel time was the dependent variable and access mode and distance from the 
airport were the independent variables, this response was included.   
 
 



 6

Task 3: Develop, Validate, and Apply Airport Access Quality Models 
 

An airport access quality model quantifies the difficulty, or resistance, encountered by 
passengers en route to the airport.  If the model indicates that the resistance to direct airport 
access is low, the airport is probably not a suitable candidate for an offsite facility.  If the model 
indicates that the resistance to direct airport access is high, an offsite facility may potentially 
improve access.  Thus, airport access quality models establish the possibility of demand by 
suggesting whether or not an airport offsite facility may be a promising option. 
 
Development of Resistance Variables 
 

Access resistance was measured using five resistance variables based on the performance 
measures identified in Task 1 impedance, access cost, ground travel time, processing time, and 
uncertainty (or ground travel time variability).  Table 1 indicates how each resistance variable 
was obtained using the results of Task 2. 

 
The sequence of steps used to develop airport access quality models were: (1) compute 

and validate the resistance variables, (2) apply the resistance function, and (3) validate the final 
airport access quality model. 
 

Table 1.  Resistance Variable Data Source 
Resistance Variable Source 

Impedance  Inferred from question 9 from survey shown in Appendix A  
Access cost Question 8 from survey shown in Appendix A  
Ground travel time Question 3 from survey shown in Appendix A 
Processing time Summation of queue time and service time data collected at check-in counters at airport 

terminal 
Uncertainty Inferred from Questions 3 and 4 from survey shown in Appendix A  
 
Compute and Validate Resistance Variables 
 

For those situations where a survey is not feasible, it is necessary to estimate each 
variable from data that can easily be measured.  For example, rather than asking respondents to 
provide a value for the “impedance” encountered during a specific trip, the value can be obtained 
from the ground travel time and the time the respondent left the place of origin (as will be shown 
in Eq. 11).  If a relationship can be established between measured variables (e.g., ground travel 
time) and the five resistance variables, these relationships can be used to estimate similar 
variables at other airports where survey data are unavailable.   
 

Accordingly, two approaches for estimating the five resistance variables were used:  
linear regression and cross classification.  For each approach, a relationship was developed 
between the variables shown in Table 1 and independent variables that could more easily be 
measured.   These relationships were based on 90% of the data collected.  The relationships were 
then “tested” on the remaining 10% of the data to assess the ability of the independent variables 
to predict the resistance variables.   
 

For example, for the linear regression approach, a relationship between the dependent 
variable, impedance, yi, and the two independent variables, i.e., ground travel time and the time a 
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respondent left the place of origin (x1 and x2),  was developed based on 90% of the data.  Then, 
the accuracy with which these relationships predicted the remaining 10% of impedances 
surveyed was determined. 

 
Application of Resistance Function 
 

The concept of the resistance function is derived from the notion of a desirability function 
developed by Derringer and Suich (1980), which states that the quality of a product with multiple 
quality characteristics is unacceptable if one of the characteristics lies outside the desired limits.  
For example, if the “product” is airport access and one of its characteristics is “ground travel 
time,” the quality of airport access will be unacceptable if the ground travel time exceeds a 
predefined value, regardless of the value of other quality characteristics.  This approach has been 
widely used for optimizing multiple-response problems (Castillo et al., 1996).  The desirability 
function transforms each estimated response variable iy to a desirability value di, such that the 
desirability values lie between 0 and 1.  The value of di increases as the “desirability” of the 
corresponding response variable increases.  
 

In an airport access application, an increase in a variable such as average access cost (yi) 
will tend to reduce the desirability of this trip.  In order to apply the desirability concept, the term 
resistance is used such that an increase in average access cost would be reflected by an increase 
the resistance encountered during the trip.  In this case, the resistance value ri increases as the 
corresponding resistance variable (yi) increases.  
 

The resistance function in Eq. 1 is used to transform the individual resistance variable (yi) 
into a resistance value ri.  
 
            0               minyyi ≤    

ri =   
z

minmax

mini

yy
yy

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−   maxmin yyy i <<              (Eq. 1) 

                                                                     1                         maxyyi ≥    
 

Note that ri is a function of yi so that one could formally denote the resistance value as 
ri(yi) rather than simply ri.  However, the nomenclature ri is used in this report to distinguish the 
resistance value ri from the resistance variable yi.   
 

Note also that the value of z in the superscript of Eq. 1 is specified by the user, where a 
large value of z is selected if the user wants yi to increase rapidly above ymin.  However, as will be 
discussed later in the context of Figure 5, a sensitivity analysis showed that z did not materially 
affect the study’s results, and thus Eq. 1 used a value of z = 1. 
 

The total resistance, Rtotal, of the passenger’s access trip is given by the geometric mean 
of the individual resistance values (ri) as shown in Eq. 2. 
 

k/1
k21total )r...rr(R ×××=                     (Eq. 2) 
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The total resistance does not give an absolute value but rather a relative value of the 
resistance of airport access.  For example, if Airport A has a resistance of 0.29, it would be 
considered to reflect a lower difficulty in access compared to Airport B with a resistance of 0.42.  
As a consequence, Airport A would be a less likely candidate for an offsite airport facility than 
would Airport B. 
 
Validation of Airport Access Quality Model 
 
 The East Side Airlines Terminal (ESAT) was used to validate the airport access quality 
model.  Because the model development and calibration did not rely on ESAT data, the ESAT 
data represented a true test case where the prediction of the models could be compared to the 
actual performance of ESAT.  Volume I of this report (Goswami et al., 2008) provides additional 
information about ESAT.  Data were sought from persons familiar with ESAT, as one of the 
libraries that had reference materials was destroyed in the September 11, 2001 attack on the 
World Trade Center, and one source from the literature served as the basis for most of the ESAT 
data (Gosling et al., 1977). 
 
 

Task 4: Develop, Validate, and Apply Offsite Facility Usage Models 
 

An offsite facility usage model predicts the probability that passengers will use an offsite 
facility.  An offsite facility usage model can also be used to identify offsite facility market 
segments or areas, identified by zip codes, where an offsite facility could be located. 
 

Informally, a probability is the result that will transpire if a certain experiment is repeated 
an infinite number of times.  Formally, this probability relies on the limit as the number of 
experiments approaches infinity (Ortúzar and Willumsen, 2004).  If, for example, ni is the 
number of times a given passenger chooses to use an offsite facility and no is the number of times 
the passenger chooses not to use an offsite facility, the probability of using an offsite facility Pi is 
given by Eq. 3, adapted from Ortúzar and Willumsen (2004). 
 

oi

i
 )nn(i nn

nlimP
oi +

=
∞→+

                     (Eq. 3) 

 
In practice, the literature noted that although Eq. 3 presumes multiple experiments, the 

concept of probability may be extended to a single event (Hogg and Ledolter, 1992) such as the 
probability of a particular passenger using an offsite facility tomorrow.  Whether multiple 
experiments or a single event is presumed, the basic laws of probability are constant (Hogg and 
Ledolter, 1992).  For example, as per Eq. 3, pi and po must sum to 1.0 if those are the only 
possible outcomes.   
 

However, Eq. 3 suggests that one has greater confidence in seeing evidence of the 
probability as the total number of experiments n = ni + no grows larger.  For example, if the 
probability of pi is 0.412, if only one experiment is conducted (n = 1), the difference between the 
expected frequency (pin = (0.412)(1) = 0.412) and the observed frequency (ni = 0 or 1) will be at 
least 0.412.  If n = 10, then the difference between the expected frequency (4.12) and the 
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observed frequency (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10) must be at least 0.12 (which would result if 
the observed frequency was 4).  If n = 1,000, it is conceivable that the difference between the 
expected frequency (412) and the observed frequency (which could be 412) may be zero.  Thus, 
for all probabilities computed in this study, one would expect a greater ability to see the expected 
frequency as the number of passengers to whom the probability is applied increases. 
 
Model Development 
 

One of the most common methods for predicting the probability of using a given mode, 
such as auto or transit, is the mode choice model (Garber and Hoel, 2009).  For more than three 
decades, mode choice models have also been used to forecast the mode passengers will use to 
access an airport (Gosling, 2008).  A particular modeling technique that appeared promising for 
this study was the binary logit regression model, which can be used to predict the probability of 
passengers using the offsite facility (Eq. 4).   
 

{ }
)X...XXexp(1

)X...XXexp(
)xX|1YPr(yE

pp22110

pp22110

ββββ
ββββ
+++++

++++
====    (Eq. 4) 

 
This function can be generalized directly to a situation where there are p predictor 

variables, in vector β, i.e., β = pβββ ,...,, 10 .   The reader should note that E{y} where Y = 1 

is offsiteP  and that E{y} where Y = 0 is offsite-nonP .   The ratio 
offsite

offsite

P1
P
−

is called the odds ratio for the 

event where 
 

)...exp(
P1

P
22110

offsite

offsite
pp XXX ββββ ++++=

−
                (Eq. 5) 

 
Eq. 4 may be derived by assuming that the utility of the offsite facility is given by Eqs. 6 

and 7, where the vector X = 1 in Eq. 6 and X = 0 in Eq. 7. 
 

=offsiteU  βX = pp22110 X...XX ββββ ++++      (Eq. 6) 
=−offsitenonU βX = 0         (Eq. 7) 

 
Thus, the probability of using an offsite airport facility is given by Eq. 8, 
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P
pp22110

pp22110
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offsite
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=
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and the probability of not using an offsite airport facility is given by Eq. 9. 
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Dividing Eq. 8 by Eq. 9 and using the relationship 1PP offsite-nonoffsite =+  yields Eq. 5.  
 

Taking the natural logarithm of both sides of Eq. 5 yields Eq. 10. 
 

pp22110
offsite

offsite X...XX
P1

P
ln ββββ ++++=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−               (Eq. 10) 

 
 The logarithm of the odds ratio as shown is called the logit, and the logit transformation 
produces a linear function of the parameters pββββ ,...,,, 210 . The range of the values of offsiteP  is 

between 0 and 1, and the range of the values of ( ))P1(Pln offsiteoffsite −  is between ∞∞− and . 
Logistic regression fitting is carried out by working with the logits, and the method of estimation 
used is the maximum likelihood method. 
 
 As an alternative approach to that shown in Eqs. 4 through 10, a cross-classification 
model was also implemented.  
 
Model Testing 
 
 As noted earlier, the relationships shown in Eqs. 4 through 10 were based on 90% of the 
data set.  The models were tested by evaluating their prediction accuracy on the remaining 10% 
of the data set. 
 
Model Application 
 
 The offsite facility usage model was used for two purposes: 
 

1. To predict the market segments that might be more likely to use an offsite facility at a 
given airport.  These market segments are based on the FDT and the variability in 
ground travel time. 

 
2. To identify promising zip codes for locating an offsite facility that would serve RIC 

and BWI.  The identification of such zip codes is based on the assumption that zip 
codes generating higher proportions of likely offsite facility users are the best 
candidate locations for an offsite facility.  (RIC and BWI had been identified as 
airports that would be more conducive to an offsite facility than CHO and ORF based 
on the results of the airport access quality models used in Task 3.) 

 
 

RESULTS AND DISCUSSION 
 

Performance Measures for Offsite Airport Passenger Service Facilities 
 

Volume I of this study (Goswami et al., 1908) suggested eight potential benefits of offsite 
airport facilities.  Performance measures based on these benefits are given in Table 2.  Some 
benefits apply only to the passenger (e.g., reduction in ground travel time), whereas other  
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Table 2.  Performance Measures 
Performance 

Variablea 
Measurable 

Elementb 
Future Potential 

Benefit 
Impedance  Satisfaction of access trip to airport 

and terminal operations 
• Passenger satisfaction could improve from 

reduced baggage handling if allowed to check 
in at offsite facility 

• Services offered at offsite facilities could 
improve overall terminal efficiency, 
ultimately resulting in higher passenger 
satisfaction 

Access cost ($) Access cost, which includes parking 
costs, public transportation fare, tolls, 
and mileage 

• Passengers could reduce parking costs by 
avoiding driving to airport and using public 
transportation from offsite facility 

Ground travel time 
(min) 

Time taken to travel from origin to 
airport terminal 

• Reduction in ground travel time delay is 
possible as passengers would be use dedicated 
public transportation operating on HOV lanes 
from offsite facility to airport 

Passenger processing 
time (min) 

Check-in counter queue time and 
service time 

• Passengers using offsite facilities could 
experience reduced delay at check-in counters 

Uncertainty (min) Perceived variation in ground travel 
time between origin and airport 
terminal 

• Uncertainty could be reduced due to use of 
public transportation, which would be aided 
by modern technologies to adhere to strict 
schedules 

Revenue and Land 
costs ($) 

Revenue and land cost difference 
between airport expansion and using 
an offsite airport facility 

• Offsite facility could act as substitute for 
expanding airport terminal and hence reduce 
demand for new land at airport site 

Volume of 
automobiles (VMT) 

CO, NOx, PM, and VOC emissions • Use of public transportation by departing 
passengers might help in reducing emissions 

Non-airport activity 
time (min)  

Time spent by air passengers at 
airport terminal when not involved in 
required airline/airport activity 

• Offsite facilities could offer increased 
amenities to passengers during waiting period 

• Terminal efficiency could be improved if 
space needed to hold passenger during non-
airport activity time was used for other 
purposes such as check in, security, etc. 

VMT = vehicle miles traveled; CO = carbon monoxide, NOx = nitrogen oxides, PM = particulate matter, VOC = 
volatile organic compound.  
aThe variable that would ideally be measured if data limitations did not exist (hence the ideal performance measure). 
bThe variable that is measured given existing data limitations (hence the performance measure used in this study). 
 
 
benefits apply to the airport operator or airline owner (e.g., reduction in land costs) or the general 
public (e.g., reduction in emissions).  The current study describes the process to determine 
passenger demand for offsite airport facilities,, and, accordingly, its focus was on the first five 
performance measures because they are direct indicators of passenger demand.  
 
 

Air Passenger Characteristics 
 
 Figure 2 (drawn to scale) depicts travel components for an average passenger departing 
from BWI.  The destination airport travel time denotes the length of the entire trip from the 
instant the passenger leaves his or her home or business to the moment the plane lands at the 
destination airport.  Components of destination airport travel time include the time period during 
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Figure 2.  Travel Timeline of Passenger Departing from BWI 
 
which the passenger travels by ground transportation to reach the airport (ground travel time), 
the time period during which the passenger spends waiting at the originating airport (non-airport 
activity time), and the time period where the plane is in the air (flight time). 
 

The survey data describe average length for each travel time component in Figure 2, the 
variation in travel time for individual passengers, the passengers’ willingness to use an offsite 
facility, and the passengers’ zip code of origin.   

 
Mean Travel Times 
 

Table 3 summarizes the findings for two sets of passengers: those arriving directly at the 
airport, as was the case in Figure 2, and those using an offsite airport facility.  The destination 
airport travel time varies between 4 hr 44 min (CHO) and 9 hr 02 min (SFO).  The average flight 
time varied from 2 hr 32 min (BWI) to 5 hr 55 min (SFO), meaning that on average, the flight 
time was just 52% of the destination airport travel time. 
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Table 3.  Summary of Survey Results 
 
 
 

Parameter 

 
 
 

CHO 

 
 
 

ORF 

 
 
 

RIC 

 
 
 

BWI 

 
Direct 
Access: 
Subtotal 

Logan 
Express: 
Service to 

BOS 

Marin 
Airporter: 
Service to 

SFO 

 
Indirect 
Access: 
Subtotal 

 
All 

Airports: 
Total 

Average total processing time 4  min 12 min 
31 sec 

5 min 
43 sec 

7 min 
25 sec 

7 min 
25 sec 

* * *  

Average wait time at ticketing queues  1 min 
24 sec 

8 min 
20 sec 

2 min 
3 sec 

3 min 
26 sec 

3 min 
48 sec 

* * *  

Average service time at ticketing 
counters 

2 min 
36 sec 

4 min 
11 sec 

3 min 
40 sec 

3 min 
59 sec 

3 min 
37 sec 

* * *  

Number of processing time observations 323 340 346 423 1,432 * * *  
Number of surveys collected 96 113 199 244 652 655 425 1,080 1,732 
Average ground travel time to airport 
terminal 

 
28 min 

 
43 min 

 
37 min 

 
44 min 

 
38 min 

 
55 min 

1 hr  
32 min 

 
74 min 

 
50  min 

Predominant mode of access  Auto (58%) Auto (54%) Auto (41%) Auto (34%) Auto (47%) Drop off 
(52%) 

Drop off 
(59%) 

Drop off 
(56%) 

 

Second most predominant mode Drop off 
(26%) 

Drop off 
(21%) 

Drop off 
(31%) 

Drop off 
(24%) 

Drop off 
(26%) 

Auto (34%) Auto (33%) Auto (34%)  

Average arrival at airport prior to 
scheduled departure 

1 hr  
4 min 

2 hr  
22 min 

2 hr  
10 min 

2 hr  
2 min 

1 hr  
54 min 

2 hr  
10 min 

1 hr  
51 min 

2 hr 1 hr  
56 min 

Average pre-flight time 1 hr  
32 min 

3 hr 
3 min 

2 hr  
45 min 

2 hr  
47 min 

2 hr  
31 min 

3 hr  
37 min 

2 hr  
58  min 

3 hr 17 min 2 hr  
47 min 

Average non-airport activity time 1 hr  
2 min 

2 hr 
 8 min 

2 hr  
03 min 

1 hr  
57 min 

1 hr  
47 min 

* * *  

Average flight time 3 hr  
12 min 

2 hr  
52 min 

2 hr  
40 min 

2 hr  
32 min 

2 hr  
49 min 

3 hr  
48 min 

5 hr  
55 min 

4 hr 51 min 3 hr  
29 min 

Average ticket cost  $496 $465 $463 $376 $450  $439 $478 $459  $453  
Average access cost $38 $35 $37 $47 $39  $25 $29 $27  $35  
Willing to use offsite facility 55% 66% 72% 70% 68% 74% 64% 70% 69% 
Average destination airport travel time 4 hr  

44 min 
5 hr  
52 min 

5 hr  
29 min 

5 hr  
20 min 

5 hr  
21 min 

6 hr  
44 min 

9 hr  
02 min 

7 hr  
53 min 

6 hr  
11 min 

Average flight time vs. destination 
airport travel time 

61% 47% 47% 46% 50% 52% 61% 57% 52% 

Average ground travel time vs. 
destination airport travel time 

11% 12% 12% 14% 12% 17% 19% 18% 14% 

Average ground travel time vs. flight 
time 

24% 38% 31% 41% 34% 36% 39% 38% 35% 

Average non-airport activity time vs. 
flight time 

55% 107% 114% 106% 96% * * *  

Average non-airport activity time vs.  
destination airport travel time 

27% 39% 43% 41% 38% * * *  

CHO = Charlottesville-Albemarle Airport, ORF = Norfolk International Airport, RIC = Richmond International Airport, BWI = Baltimore/Washington 
International Thurgood Marshall Airport, BOS = Boston Logan International Airport, SFO = San Francisco International Airport.  
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Thus, the time not spent in the air, i.e., the pre-flight time, is a substantial portion of the 
passenger’s journey, with an average of 2 hr 47 min per airport.  The largest component of this 
pre-flight time was non-airport activity time (with an average duration of 1 hr 47 min) followed 
by ground access time (with an average duration of 50 min).  The processing time was relatively 
small (with an average duration of slightly more than 7 min). 
 

Two differences between the airports without offsite facilities and with the offsite 
facilities are also noted.  The ground travel time for airports with offsite facilities (average of 74 
min) is greater than the ground travel time for airports without offsite facilities (average of 38 
min).  Passengers using the airports with offsite facilities had longer flights (average duration of 
3 hr 29 min) compared to passengers who used airports without such facilities (average duration 
of 2 hr 49 min). 
 
Variation in Travel Times 
 

Table 3 summarizes average values for each travel time component.  For example, the 
average passenger arrived 1 hr 56 min ahead of his or her scheduled departure time, but this 
average value masks variation in individual passengers: some passengers arrived 10 min prior to 
departure and some arrived 9 hr prior to departure.   This section discusses the variation in 
airport arrival time, ground travel time, processing time at the check-in counters, security time, 
and non-airport activity time. 
 
Variation in Airport Arrival Time 
 

Table 3 showed the average arrival at airport prior to scheduled departure, which was 
calculated by subtracting the passenger’s scheduled boarding time from the stated time of arrival 
at the terminal.  Table 4 repeats this average value for each airport and shows the coefficient of 
variation.  (The coefficient of variation is calculated as the standard deviation divided by the 
mean.)  The lower coefficient of variation for BOS and SFO when compared to RIC, ORF, and 
BWI indicates that passengers’ ground travel time is less variable at the two airports where an 
offsite facility exists (BOS and SFO) than at an airport where no such facility exists (BWI, ORF, 
and RIC).  One possible explanation is the use of HOV lanes by the buses at BOS and SFO, 
which should reduce this variation, or uncertainty, in ground travel time.  A different possible  
 
 

Table 4.  Arrival Time at Airport Prior to Scheduled Departure 
 

Airport 
 

Mean 
 

Median 
Coefficient 

of Variation 
CHO 1 hr 4 min 1 hr 46% 
ORF 2 hr 22 min 2 hr 66% 
RIC 2 hr 10 min 1 hr 47 min 65% 
BWI 2 hr 2 min 1 hr 45 min 54% 
BOS 2 hr 12 min 2 hr 5 min 49% 
SFO 1 hr 54 min 1 hr 48 min 45% 

CHO = Charlottesville-Albemarle Airport, ORF = Norfolk International Airport, 
RIC = Richmond International Airport, BWI = Baltimore/Washington International Thurgood 
Marshall Airport, BOS = Boston Logan International Airport, SFO = San Francisco 
International Airport.  
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explanation is the variation in congestion levels, which is supported by the fact that CHO has the 
second lowest coefficient of variation in Table 4, no HOV lanes, and likely the lowest level of 
traffic congestion of the six airports studied.   
 
Variation in Ground Travel Time 
 

When passengers are using an offsite facility, the ground travel time has three 
components: ground travel time from origin to the facility, transfer time at the facility, and 
ground travel time from the facility to the airport.  For example, based on the data obtained from 
the survey (Appendix B) for the Marin Airporter offsite facility, Table 5 shows the mean and 
coefficient of variation for the first component: the ground travel time from the top five 
originating zip codes to the corresponding offsite facility serving SFO.  Table 6 shows 
comparable information for the remaining two components: the transfer times at the offsite 
facility and the ground travel times from the offsite facility to SFO.   
 

Table 5.  Variability in Ground Travel Time from Origin to Marin Airporter Terminal 
Ground Travel Time to Marin Airporter Terminal Marin Airporter 

Terminal Accessed at 
Originating Zip 

Code Mean Coefficient of Variation 
San Rafael 94901 14 min 32 sec 91% 
San Rafael 94903 11 min 31 sec 41% 
Manzanita 94941 7 min 34 sec 49% 
Larkspur 94904 18 min 50 sec 110% 
Novato 94947 33 min 37 sec 91% 
 

Table 6.  Transfer Time and Ground Travel Time from Marin Airporter Terminal to San Francisco 
International Airport 

Transfer Time Ground Travel Time to San Francisco Marin Airporter 
Terminal at Mean Coefficient of Variation Mean Coefficient of Variation 

Novato 10 min 41 sec 60% 1hr 15 min 23% 
San Rafael 12 min 20 sec 52% 54 min 14 sec 15% 
Larkspur 14 min 3 sec 64% 52 min 38 sec 14% 
Seminary Drive 10 min 30 sec 60% 45 min 47 sec 17% 
Manzanita 10 min 20 sec 65% 48 min 17 sec 15% 
Sausalito 14 min 12 sec 76% 44 min 16 sec 18% 

 
 
Variation in Processing Time 
 

Table 3 showed that the average time to process a passenger at the check-in counters was 
relatively low (e.g.,  5 min 43 sec at RIC) compared to the other travel time components.  Table 
7 shows that these processing times were highly variable (e.g., a 90% coefficient of variation at 
RIC).   

 
Variation in Security Time 
 

The TSA provides the average, median, and maximum wait times of passengers at 
security gates for various airports (TSA, 2007).  Table 8 shows that these average times are 
relatively low (e.g., a 2-min average at RIC).  The reader should note the large deviation between  
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Table 7.  Processing Timea 
 

Airport 
 

Mean 
 

Median 
Coefficient of 

Variation 
CHO 4 min 3 min 5 sec 74% 
ORF 12 min 31 sec 8 min 38 sec 104% 
RIC 5 min 43 sec 3 min 50 sec 90% 
BWI 7 min 25 sec 5 min 52 sec 71% 

CHO = Charlottesville-Albemarle Airport, ORF = Norfolk International 
Airport , RIC = Richmond International Airport, BWI = Baltimore/ 
Washington International Thurgood Marshall Airport. 
aProcessing time is the summation of queue time and service time at ticketing counters 

 
Table 8.  Security Checkpoint Wait Time 

 Airport Average Median Maximum 
CHO 4 min 4 min 10 min 
ORF 5 min 4 min 21 min 
RIC 2 min 2 min 12 min 
BWI 6 min 5 min 28 min 
BOS 4 min 3 min 36 min 

CHO = Charlottesville-Albemarle Airport, ORF = Norfolk International Airport,  
RIC = Richmond International Airport, BWI = Baltimore/Washington International 
Thurgood Marshall Airport, BOS = Boston Logan International Airport. 

 
the average and maximum values; e.g., although the average wait time at BWI was 6 min, the 
maximum wait time was 28 min). 
 
Variation in Non-Airport Activity Time 
 

After completing the security screening process, passengers have additional time prior to 
boarding the flight.   This non-airport activity time is not only comparable to the actual flight 
time but is also a major portion of the total pre-flight time.   The two data elements used to 
calculate the non-airport activity time—processing time and arrival at airport prior to scheduled 
departure—were collected using different methods.  Thus, a given passenger’s processing time 
cannot be matched with his or her arrival at airport prior to departure.   Hence the non-airport 
activity time was determined by simulating 50 combinations of linking the two data elements.  
Based on these simulations, the mean and median of non-airport activity times are shown in 
Table 9 (truncated to the lowest minute).   

 
Willingness to Use an Offsite Facility 
 
 As shown in Appendices A and B, one survey question was whether airport passengers 
would be willing to use an offsite facility (for surveys conducted at BWO, CHO, ORF, and RIC, 
which were not served by an offsite facility) or whether passengers would be interested in 
additional services at their offsite facility (for surveys conducted at BOS and SFO, which were 
served by offsite facilities providing only transportation). 
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Table 9.  Non-Airport Activity Timea 
 

Airport 
 

Mean 
 

Median 
Coefficient of 

Variation 
CHO 1hr 1minb 57 min 17 sec 49% 
ORF 2 hr 8 min 1 hr 50 min 75% 
RIC 2 hr 2 min 1 hr 37 min 68% 
BWI 1 hr 57 min 1 hr 42 min 57% 

 CHO = Charlottesville-Albemarle Airport, ORF = Norfolk International Airport,  
RIC = Richmond International Airport, BWI = Baltimore/Washington International Thurgood 
Marshall Airport. 
aTime spent by passengers at terminal while not engaged in required airport/airline procedure. 
bExample: The 95% confidence interval showed that lower bound for CHO mean time was 1 hr 
1min 35 sec and upper bound was 1 hr 1 min 45.5 sec.  Thus, the truncated value 1 hr 1min is 
within this 95% confidence interval. 

 
Surveys Conducted at Airports without Offsite Facilities 
 

At the four airport terminals without an offsite facility, passengers were asked if they 
would be willing to use an offsite facility in the future, provided that the facility was suitably 
located and would provide check-in, baggage handling, and transfer to the airport.  Overall, 68% 
of the passengers indicated they would use such a facility.  Responses varied slightly by airport:      
72% (RIC), 70% (BWI), 55% (CHO), and 66% (ORF) indicated they would use such a facility. 
 
Surveys Conducted at Airports with Offsite Facilities 
 
 Passengers on buses transferring them from offsite facilities to BOS and SFO were asked 
if they would like to have check-in and baggage handling in the future.  Of these passengers, 
74% of passengers using the Logan Express service at BOS indicated that they were in favor of 
additional services at the existing locations, and 64% of the passengers using the Marin Airporter 
service to SFO indicated the same.   
 
 These passengers were also asked why they preferred to use the offsite airport facility 
rather than accessing the airport directly.  Table 10 shows the reasons passengers gave for using 
the offsite facility.  Of the 963 passengers surveyed, 183 (19%) indicated that the only reason for 
using the offsite facility was that it reduced the variability in ground travel time compared to 
accessing the airport directly. 45 passengers (5%) cited all four reasons for using the offsite 
facility:  shorter travel time, lower cost, reduced uncertainty of ground travel time, and 
convenient parking.  Overall, 418 passengers (43%) perceived that reduced variability was at 
least one of the reasons that they preferred to use the offsite facility.  
 
Geographic Distribution of Passengers 
 

Some areas of a region may contribute a disproportionately large share of airport 
passengers.  For example, at RIC, passengers arrived from 84 zip codes, but 19% of the zip 
codes (16 zip codes) accounted for 50% of the passengers.  At CHO, three zip codes accounted 
for 48% of the passengers.  Table 11 shows the market share of the top three passenger-
generating zip codes for each airport.   Figure 3 and Figure 4 show the three zip codes in the 
Charlottesville-Albemarle region and in the Richmond metropolitan area that generate the 
highest number of passengers at CHO and RIC, respectively. 
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Table 10.  Offsite Airport Facility Preference 
No. of Passenger 

Responses 
Shorter 

Travel Time 
 

Lower Cost 
Reduced 

Variability 
Convenient 
Parking 

183   √  
179  √   
134 √    
132    √ 
49   √ √ 
45 √ √ √ √ 
42  √  √ 
39  √ √  
39 √  √  
32 √   √ 
29 √ √ √  
18 √ √   
18 √  √ √ 
16  √ √ √ 
8 √ √  √ 
% of Total 34% 39% 43%a 36% 
aThe percentage of passengers indicating reduced variability as one of the reasons for using offsite 
facility was calculated in the following manner: 963 responses were obtained; 418 indicated reduced 
variability as one reason for using facility (e.g., for 183 respondents, reduced variability was only 
reason, for 49 respondents, reduced variability and convenient parking were each cited as a reason).  
The ratio of 418/963 is 43%.   

 
Table 11.  Passenger Origins in Region 

 
 

Airport 

 
Top 3 Passenger-Generating 

Zip Codes 

 
Cumulative Market Share 

of Top 3 Zip Codes 

% of Zip Codes 
Generating 50% of 

Passengers 
CHO 22901, 22902, 22903 48% 15% 
ORF 23454, 23321, 23060 17% 25% 
RIC 23112, 23220, 23185 14% 19% 
BWI 21401, 21212, 21044 9% 27% 
BOS  01701, 02184, 01801 8% 16% 
SFO  94901, 94903, 94941 32% 6% 
CHO = Charlottesville-Albemarle Airport, ORF = Norfolk International Airport, RIC = Richmond International 
Airport, BWI = Baltimore/Washington International Thurgood Marshall Airport , BOS = Boston Logan 
International Airport, SFO = San Francisco International Airport.  

 

 
Figure 3.  Top Three Passenger-Generating Zip Codes for Charlottesville-Albemarle Airport  
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Figure 4.  Top Three Passenger-Generating Zip Codes for Richmond International Airport 

 
 

Development, Validation, and Application of Airport Access Quality Models 
 

As discussed in the methodology for Task 3, airport access quality models are used to 
estimate the current difficulty experienced by passengers while accessing an airport.  Airports 
that exhibit higher degree of difficulty, i.e., a higher resistance, suggested a higher initial demand 
for an offsite facility.   
 

Because a reliable resistance function requires accurate resistance variables, a test was 
devised to ensure that the five variables are accurate.  This test was as follows.  Five hundred 
data points collected from four airports where passengers access the airport directly were 
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randomly divided into two data sets: a training data set (90%) and a testing data set (10%).  From 
the training data set, models were developed to determine each of the five resistance variables. 
Then, the accuracy of these models was determined with the test data set.  This test determined 
whether linear regression or cross classification was more appropriate for estimating the 
resistance variables. 
 

A final validation of the airport access model was performed by using data from ESAT.   
 
Development of Resistance Variables Using Linear Regression 
 

The five resistance variables were derived from the survey data as follows: 
 

1. Impedance.  The responses to Question 9 of the survey shown in Appendix A were 
used to code the impedance as follows: 1 (very satisfied and do not want 
improvements); 2 (satisfied, but expect improvements); 3 (not satisfied and want 
improvements). 

 
2. Access cost.  The responses to Question 8 of the survey were added to develop a 

single cost figure in units of dollars.   
 
3. Ground travel time.  The responses to Question 3 of the survey were used to develop 

a value in minutes.   
 
4. Processing time.  The summation of queue time and service time data collected at 

check-in counters at the airport terminal was used to estimate processing time in 
minutes. 

 
5. Uncertainty.  The responses to Question 3 gave the ground travel time as provided by 

passengers.  The responses to Question 4 provide the origin of the travelers, which 
was, in turn, used to acquire the travel time as reported by Google, Inc. (2007).   The 
absolute difference in minutes between this travel time and the ground travel time 
reported in Question 3 was used as a measure of uncertainty.   

 
Computation of Resistance Variables 
 

The regression equations for the five resistance variables are given in Eqs. 11 through 15. 
 

Impedance, y1 = 0.16(Ground travel time) + 0.016(Time left origin) + 1.25                               (Eq. 11) 
 

Access cost, y2 = 0.15(Ground travel time) + 14.94(Taxi) – 14.33(Drop off) – 11.98(Bus) – 17.24(Rail) 
+ 17.98                                                                                                                       (Eq. 12) 

 
Ground travel time, y3 = 0.9(Distance from airport) – 25.29(Auto) – 27.24(Rental) – 29.17(Taxi) 
– 29.07(Drop off) – 25.29(Bus) + 39.61         (Eq. 13) 

 
Processing time, y4 = 1.02(Service time) + 0.018(Bags) + 0.04                                              (Eq. 14) 
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Uncertainty, y5 = 0.23(Distance from airport) – 18.66(Auto) – 18.81(Rental) – 19.16(Taxi) – 18.71(Drop 
off) – 21.36(Bus) + 21.77                                                                (Eq. 15) 

 
The reader should note that time left origin shown in Eq. 11 was determined by subtracting 
ground travel time (Question 3, Appendix A) from time arrived at airport terminal (Question 2, 
Appendix A). 
 

Eqs. 11 through 15 were developed based on the 90% training data set.  The testing data 
set was then used to determine the accuracy of the predictions, and an absolute percentage error, 
defined as the difference between the predicted and true values divided by the true value.   
Eqs. 11 through 15 generally showed very high absolute percentage errors of 98%, 173%, 29%, 
94%, and 174%, respectively. 
 
Application of Resistance Function 
 

The average values for the five resistance variables (from Eqs. 11 through 15) were 
transformed into resistance values (according to Eq. 1).  For example, when data from BWI 
airport were used with Eq. 11 to determine ycost, the maximum access cost predicted was $41.92, 
the minimum access cost paid predicted was $1.49, and the average cost paid by an air passenger 
accessing BWI as predicted by Eq. 11 was $21.36.  Thus, the resistance value of the cost access 
variable for BWI is 0.49 based on Eq. 1. 
 

cos
.cost min .cost 21.36 1.49 0.49
.cost min .cost 41.92 1.49t

Aver
Max

⎛ ⎞− −⎛ ⎞= = =⎜ ⎟ ⎜ ⎟− −⎝ ⎠⎝ ⎠
(z=1) 

 
Similarly, the resistance values for the other four resistance variables were 0.28, 0.23, 0.18, and 
0.24.   
 

The total resistance for each airport was determined using Eq. 2.  For example, the total 
resistance of an access trip to BWI is 0.27: 
 

( ) ( ) 27.024.0*18.0*23.0*28.0*49.0)r*r*r*r*r(R 55 yuncertaintimpedancetimetravelgroundtimeprocessingcostBWI,total ===

 
Table 12 shows the components of the total resistance calculation for BWI.  Table 13 

shows the total resistance calculations for the remaining three airports.  The results contradict the 
resistance function assumption: the assumption is that an increase in average values of a 
resistance variable should increase the resistance value.  For example, the average ground travel 
time at CHO is 29 min and at BWI is 44 min.  Accordingly, the ground travel time resistance 
value at BWI (0.23 in Table 12) should be higher than that of CHO (0.37 in Table 13).  Clearly 
this is not the case.  This contradiction, coupled with the large percentage errors that were 
observed when testing these data, suggests that the regression technique may not be appropriate 
for determining resistance variables.   

 
The correlations among independent variables in Eqs. 11 through 15 and the correlation 

among the resistance values (e.g., rcost, rprocessing time, rground travel time, rimpedance, and runcertainty) were 
investigated to determine why the model gave contradictory results.  Low correlation coefficients 
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Table 12.  Resistance of Accessing Baltimore/Washington International Thurgood Marshall Airport 
Predicted Resistance Variables 

(Eqs. 11-15) 
Resistance Values

(Eq. 1) 
Total Resistance 

(Eq. 2) 
Max 2.32  
Min 1.44 0.18 

 Impedance 
  

Average 1.60  
Max $41.92  
Min $1.49 0.49 

 Access cost 
  

Average $21.36  
Max 140  
Min 14 0.23 

Ground travel time 
  

Average 44  
Max 0.329  
Min 0.042 0.28 

 Processing time  
  

Average 0.124  
Max 35.00  
Min 4.00 0.24 

 Uncertainty 
  

Average 12.00  

0.27 

 
were found among the five resistance values, with all correlation coefficients below 0.15.  Some 
degree of correlation, however, was found in two cases.   Moderate correlation existed between 
ground travel time and time left origin (-0.3), which are the independent variables predicting 
impedance (Eq. 11), and between service time and number of bags (0.4), which are independent 
variables predicting processing time (Eq. 14). 
 
 Eq. 1 suggests that different values of z might affect the resistance function.  Thus, a 
sensitivity analysis was performed with values of z not equal to the previously assumed value of 
z = 1.  Figure 5 shows that varying the value of z between 0.1 and 3.0 does not affect the airport 
ranking in terms of resistance but it does affect the magnitude of the difference between airports.  
 
Development of Resistance Variables Using Cross Classification 
 

Unlike linear regression, which assumes residuals are normally distributed, cross-
classification is nonparametric since no distribution is assumed.  Further, cross classification 
does not require a linear relationship across all values of an independent variable.  For example, 
cross classification might be advantageous if a small increase in ground travel time greatly 
increases impedance (Eq. 11) for some ground travel time below a certain threshold but has little 
effect for ground travel time above this threshold.  As with the linear regression approach, five 
resistance variables were determined for use with Eq. 2.   
 
Computation of Resistance Variables 

 
 As an illustration, one resistance variable may be considered, e.g., impedance.  As was 
the case with the linear regression model, passenger satisfaction as reported in the survey was 
used to develop the impedance.  The two independent variables that predict this impedance, time 
left origin and ground travel time are divided into categories.  Table 14 shows the number of 
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Table 13.  Resistance of Access Trip 
Airport Predicted Resistance Variables (yi)  Resistance Values (ri) Total Resistance (Rtotal) 

Max 1.66  
Min 1.36 0.37 

 Impedance 
  

Average 1.47  
Max $35.98  
Min $4.30 0.44 

 Access cost 
  

Average $18.17  
Max 56.78  
Min 12.72 0.37 

Ground travel time 
  

Average 28.98  
Max 0.321  
Min 0.051 0.21 

 Processing time  
  

Average 0.109  
Max 26  
Min 1 0.25 

CHO 
  

 Uncertainty 
  

Average 8  

0.32 

Max 1.02  
Min 0.16 0.19 

 Impedance 
  

Average 0.32  
Max $43.42  
Min $4.30 0.36 

 Access cost 
  

Average $18.51  
Max 133.12  
Min 14.14 0.22 

Ground travel time 
  

Average 39.80  
Max 0.38  
Min 0.04 0.25 

 Processing time  
  

Average 0.13  
Max 33.00  
Min 2.00 0.26 

RIC 

 Uncertainty 
  

Average 10.00  

0.25 

Max 1.78  
Min 1.41 0.37 

 Impedance 
  

Average 1.55  
Max $45  
Min $5 0.39 

 Access cost 
  

Average $20  
Max 149  
Min 12 0.18 

Ground travel time 
  

Average 37  
Max 0.239  
Min 0.049 0.39 

 Processing time  
  

Average 0.123  
Max 38.00  
Min 4.00 0.16 

ORF 

 Uncertainty 
  

Average 9.00  

0.28 

CHO = Charlottesville-Albemarle Airport, RIC = Richmond International Airport, ORF = Norfolk 
International Airport.  
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Figure 5.  Effect of z on Resistance Values (ri) (see Eq. 1) 

 
 
passengers in each category.  For example, there are 39 passengers whose ground travel time 
from their point of origin to the airport terminal was between 15 and 30 min and they departed 
from their point of origin between 9 A.M. and 12 P.M.  The collective satisfaction of these 
passengers is 53 based on the survey responses.  Based on these two numbers from Table 14, the 
impedance per person (=1.36) is calculated, as shown in Table 15, by dividing the collective 
satisfaction score (=53) by the number of passengers in the corresponding category (=39). 
 

The impedances may be applied to the testing data set.  Table 16 compares the predicted 
values to the actual values and shows that the average absolute percentage error is 13.39% for 
the impedance resistance variable. 
 

Cross classification tables analogous to Table 15 were developed for the other four 
resistance variables:  access cost (Table 17), ground travel time (Table 18), processing time 
(Table 19), and uncertainty (Table 20).   
 

The absolute percentage errors are 30.85%, 13.80%, 16.66%, and 38.31%, respectively, 
for access cost, ground travel time, processing time, and uncertainty.  Thus, computing the five 
resistance variables by the cross-classification method (Tables 15, 17, 18, 19, and 20) yields 
lower errors than those obtained from computation of the resistance variables by the linear 
regression method (Eqs. 11 through 15).   
 
 
Application of Resistance Function 
 

The five resistance variables from Tables 15, 17, 18, 19, and 20 may then be used with 
Eqs. 1 and 2 to determine total resistance of the access trip to each airport.  For example, ground 
travel time can be considered.  Table 18 showed that the minimum ground travel time was 14.58 
min and the maximum ground travel time was 85 min.  Using the data in Table 18 and Table 21, 
the average ground travel time for passengers accessing RIC is 40.04 min.   
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Table 14.  Impedance Versus Time Left Origin and Ground Travel Time 
Time Left Origin 

Prior to 6 A.M. 6 A.M.-9 A.M. 9 A.M.-12 P.M. 12 P.M.-3 P.M. 3 P.M. or Later 
Ground 
Travel 

Time (min) Passengers Satisfaction Passengers Satisfaction Passengers Satisfaction Passengers Satisfaction Passengers Satisfaction 
<15 5 8 12 15 16 20 5 6 5 5 
15-30 19 26 34 46 39 53 48 72 10 18 
30-45 13 22 39 57 44 64 46 73 16 25 
>45 9 14 47 68 48 79 49 85 1 3 
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Table 15.  Impedance  
Time Left Origin Ground Travel 

Time (min) <6 A.M. 6-9 A.M. 9-12 P.M. 12-3 P.M. >3 P.M. 
<15 1.60 1.25 1.25 1.20 1.00 
15-30 1.37 1.35 1.36 1.50 1.80 
30-45 1.69 1.46 1.45 1.59 1.56 
>45 1.56 1.45 1.65 1.73 3.00 

 
 

Table 16.  Actual vs. Predicted Impedance  
Time Left Origin 

<6 A.M. 6-9 A.M. 9 A.M.-12P.M. 12-3 P.M. >3 P.M. 
Ground 
Travel Time 
(min) Actual Predicted Actual Predicted Actual Predicted Actual Predicted Actual Predicted 
<15 1 1.6 1 1.25 0 0 2 2.4 0 0 
15-30 4 4.11 20 14.88 7 6.79 26 21 0 0 
30-45 6 5.08 4 4.38 5 4.36 19 14.28 0 0 
>45 6 4.67 4 4.34 5 4.94 19 15.61 0 0 

 
 

Table 17.  Access Cost 
Ground Travel Mode Ground Travel Time 

 (min)  Auto Drop-off Other 
<20 $13.93 $3.26 $16.62 
20-30 $19.20 $5.97 $28.61 
30-40 $22.01 $5.42 $29.00 
40-50 $28.85 $7.53 $14.54 
>50 $31.98 $12.13 $27.41 

 
 

Table 18.  Ground Travel Time 
Ground Travel Mode Distance from 

Airport (mi)  Auto Drop-off Other 
<10 18.50 14.76 14.58 
10-20 29.05 23.49 25.00 
20-30 34.83 30.95 31.94 
30-40 45.21 46.25 64.29 
40-50 55.00 54.29 60.83 
>50 84.31 85.00 65.63 

 
 

Table 19.  Processing Time 
No. of Bags Service Time 

(hr)  0 1 2+ 
<0.017 0.046 0.072 0.042 
0.017-0.05 0.055 0.095 0.096 
0.05-0.083 0.077 0.109 0.133 
0.083-0.117 0.125 0.153 0.168 
0.117-0.15 0.175 0.227 0.229 
>0.15 0.170 0.200 0.233 

 
 

Table 20.  Uncertainty 
Ground Travel Mode Distance 

from Airport (mi)  Auto Drop-off Other 
<10 4.94 3.26 4.90 
10-20 7.03 6.40 6.27 
20-30 6.40 5.30 6.67 
30-40 7.92 6.90 7.11 
40-50 7.28 10.88 8.80 
>50 9.88 11.00 9.78 
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Table 21.  Passenger Count 
Ground Travel Mode Distance from 

Airport (miles)  Auto Drop-off Other 
<10 1 5 2 
10-20 16 18 12 
20-30 28 20 9 
30-40 5 0 0 
40-50 5 5 1 
>50 15 6 5 

Corresponding cells from Tables 18 and 21 are multiplied and average value of 
cells is calculated to determine average ground travel time of 40.04 min for 
passengers accessing Richmond International Airport. 

 
Eq. 1 indicates the corresponding resistance for ground travel time for RIC is 0.36: 

 
36.0

)58.1485(
)58.1404.40(r timetravelground =

−
−

=  

 
The resistance values of the other four resistance variables were calculated in a similar 

fashion.  Thus, the total resistance in passengers’ access to RIC is the geometric sum of the 
resistance values based on Eq. 2, which is 0.38. 
 

38.0)52.0*24.0*36.0*37.0*49.0()r*r*r*r*r(R 55 yuncertaintimpedancetimetrvelgroundtimeprocessingcostRIC,total ===

 
The total resistance of the other three airports is 0.29 (CHO); 0.42 (BWI); and 0.36 (ORF). 
 

Thus, the cross-classification technique suggests that CHO has a lower resistance, and 
hence a lower difficulty of access, when compared to the other three airports. This, in turn, 
indicates that an offsite airport facility would be least viable for CHO.  Use of the cross-
classification technique, contrary to using the linear regression technique, supports the resistance 
function assumption: an increase in average values of a resistance variable increases the 
resistance value (as shown in Appendix C).  For example, airports with larger average ground 
travel times (using Table 18), would have a larger value of rground travel time (Eq. 1).  Appendix C 
shows the resistance values of the resistance variables and the corresponding total resistance of 
the access trip to the different airports.   

 
Table 22 shows the resistance of the access trips as determined by the two techniques.  

Based on the high absolute percentage errors for the linear regression technique (see Table 23), 
the cross-classification approach is the preferred technique for estimating the resistance variables 
needed for Eq. 2. 

 
Model Validation: Test with East Side Airlines Terminal 
 

A limited validation effort was conducting using information obtained from ESAT.  
Tables 24 and 25 contrast 2 years of ESAT operations 1970, when ESAT provided check-in 
services and the minimum fare for travel from ESAT to the John F. Kennedy International 
Airport (JFK) was $2.50, and 1976 when check-in services were no longer available and the  
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Table 22.  Total Resistance Based on Airport Access Quality Model 
Technique for Determining Resistance Variables  

Airport Regression Cross-classification 
CHO 0.32 0.29 
ORF 0.28 0.36 
RIC 0.25 0.38 
BWI 0.23 0.42 
Comment Contradicts resistance function 

assumptiona 
Supports resistance function 
assumption 

CHO = Charlottesville-Albemarle Airport; ORF = Norfolk International Airport, RIC = Richmond 
International Airport, BWI = Baltimore/Washington International Thurgood Marshall Airport. 
aA higher resistance suggests higher difficulty of access trip.  As it is believed that CHO access trip has 
lower difficulty than BWI access trip, results of regression-based airport access model contradict this 
belief.   

 
Table 23.  Absolute Percentage Error 

Technique for Determining Resistance Variables   
Resistance Variable Regression Cross-classification 
Impedance  98% 13% 
Access cost 173% 31% 
Ground travel time 29% 14% 
Processing time 94% 17% 
Uncertainty 174% 38% 

 
Table 24.  East Side Airline Terminal (ESAT) Operations in 1970 

Resistance 
variable 

yavg  
Data Source 

Impedance  1.2 Average impedance of 1.2 was inferred based on scale of satisfaction per Question 9 
in Appendix A (1 = very satisfied, 2 = satisfied, 3 = not satisfied) and services 
available at ESAT, i.e., check in and transportation 

Access cost ($) 5.0 Average access cost of $5 was inferred based on minimum cost of $2.50 charged 
from each passenger from ESAT to JFK plus additional cost of $2.50 was assumed, 
which passengers might have incurred while traveling from origin to ESAT 

Ground travel 
time (min) 

35 Average ground travel time of 35 min was inferred based on distance (=15 miles) 
between ESAT from JFK plus assumed average distance of 20 mi between ESAT at 
passenger origin (assumed travel speed of 60 mph) 

Processing time 
(hr) 

0.08 Average processing time of 0.08 hr was assumed based on current processing times at 
airports, which is  0.11 hr 

Uncertainty (min) 4.5 Average uncertainty of 4.5 was inferred based on the Roadway Congestion Index 
(RCI) as reported by Texas Transportation Institute (Schrank and Lomax, 2007) (1.21 
for Baltimore region and 1.13 for New York area in 2007) and average uncertainty of 
passengers accessing BWI according to Appendix C (7.23). RCI of 0.75 was 
extrapolated for 1970 (Wells, 2006) (RCI = 1 means that typical commute time is not 
more than 25% longer than off-peak travel time) 

JFK = John F. Kennedy International Airport; BWI = Baltimore/Washington International Thurgood Marshall 
Airport. 

 
minimum fare was $4.00 (Gosling et al., 1977).  In the absence of individual data, all of the 
average values were inferred as noted in Tables 24 and 25. In addition, it was assumed that 
ground travel time and processing time remained unchanged and that the impedance increased 
from 1970 to 1976.  Uncertainty values were calculated by extrapolating Roadway Congestion 
Index (RCI) values (Schrank and Lomax, 2007).  
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Table 25.  East Side Airline Terminal (ESAT) Operations in 1976 
Resistance 
Variable 

 
yavg 

 
Data Source 

Impedance  1.5 Average impedance of 1.5 was inferred based on scale of satisfaction per Question 9 
in Appendix A (1 = very satisfied, 2 = satisfied, 3 = not satisfied) and services 
available at ESAT, i.e., transportation (check in discontinued) and hence lower 
satisfaction as compared to 1970 

Access cost 
(dollar) 

8.0 Average access cost of $8.00 was inferred based on minimum cost of $4 charged 
from each passenger from ESAT to JFK plus additional cost of $4 was assumed, 
which passengers might have incurred while traveling from origin to ESAT 

Ground travel 
time (min) 

35 Average ground travel time of 35 min was inferred based on distance (=15 mi) 
between ESAT from JFK plus assumed average distance of 20 mi between ESAT at 
passenger origin (assumed travel speed of 60 mph) 

Processing time 
(hour) 

0.08 Average processing time of 0.08 hr was assumed based on current processing times at 
airports, which is  0.11 hr 

Uncertainty (min) 4.7 Average uncertainty of 4.7 was inferred based on Roadway Congestion Index (RCI) 
as reported by Texas Transportation Institute (Schrank and Lomax, 2007) (1.21 for 
Baltimore region and 1.13 for New York area in 2007) and average uncertainty of 
passengers accessing BWI according to Appendix C (7.23). An RCI of 0.77 was 
extrapolated for 1970 (Wells, 2006) (RCI = 1 means that typical commute time is not 
more than 25% longer than off-peak travel time) 

JFK = John F. Kennedy International Airport; BWI = Baltimore/Washington International Thurgood Marshall 
Airport. 
 

Tables 26 and 27 give the results of the cross-classification model based on the 
independent variables in Tables 24 and 25.   

 
Since higher values for resistance signify a greater difficulty in access trip, the increase in 

resistance from 0.15 (Table 26) to 0.22 (Table 27) indicates that the model performed as 
expected: the increase in access cost coupled with the cessation of check-in services increased 
the difficulty of the trip.  This finding is supported by a decline in the number of passengers 
using ESAT between 1970 and 1976 from 1.37 million passengers to 1.2 million passengers 
(Gosling et al., 1977).  The literature examined in this report (Castillo et al., 1996; Derringer and 
Suich, 1980; Harrington, 1965) does not provide a method that can be used to determine whether 
differences in resistance, such as the 0.15 and 0.22 described here, are statistically significant. 
 

Table 26.  East Side Airline Terminal (ESAT) Resistance in 1970 
Individual Resistance Values Total Resistance 

rimpedance 0.1 
rcost 0.06 
rground travel time 0.29 
rprocessing time 0.2 
runceratainty 0.19 

Rtotal,ESAT = 0.15 

 
 

Table 27.  East Side Airline Terminal (ESAT) Resistance in 1976 
Individual Resistance Values Total Resistance 

rimpedance 0.25 
rcost 0.17 
rground travel time 0.29 
rprocessing time 0.2 
runcertainty 0.21 

Rtotal,ESAT = 0.22 
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Model Application: Selection of Promising Airports for Offsite Facility 
 

The airport access models developed in this study may be used to identify candidate 
locations for an offsite facility.  For example, because BWI and RIC have a higher resistance of 
airport access when compared to ORF and CHO, they are deemed candidate airports that could 
benefit from an offsite airport facility more so than ORF and CHO.   
 
 

Development, Validation, and Application of Offsite Facility Usage Models 
 
 Two types of models were used to predict usage for offsite facilities: a binary logit model 
and a cross-classification model.  Although some differences were noted, these models yielded 
similar levels of accuracy.  The models were also used to identify which zip codes may be 
promising locations for an offsite facility. 
 
Development and Validation of Binary Logit Model  
 

A binary logit model was developed to identify variables that would predict usage for 
offsite facilities.  The model building procedure involved four tests. 
 

1. Identify significant variables. 
2. Check models for goodness of fit. 
3. Determine prediction accuracy with a training data set. 
4. Determine prediction accuracy with a testing data set. 

 
The tests were performed in sequential order.  For example, models that contained 

insignificant variables (Test 1) were discarded and were not carried forward to Test 2.   
 

Table 28 summarizes the results of the first three tests.  The first three models passed 
Test 1, as they all had significant variables.  Only the final model passed Test 2, as Models 1 and 
2 did not demonstrate adequate goodness of fit.  Test 3 showed that the final model’s prediction 
accuracy was 63%, which was better than the 50% that would have resulted from chance alone. 

 
Results of Test 1: Determine Significance of Independent Variables 
 

The statistical software package SPSS was selected to develop the models and to 
determine the significance of the independent variables.   
 

The final model shown in the first row of Table 28 suggests that the FDT and perceived 
variability (VAR) significantly influences a passenger’s willingness to use an offsite facility.  
This model is given in Eq. 16: 
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Table 28.  Binary Logit Models 
Test 1b Test 2c Test 3d  

 
 
 

Model 

 
 
 

Variables 
Includeda 

 
 
 

Significance 

Hosmer-
Lemeshow 
Goodness- 

of-Fit 

Use 
Offsite 
Facility 

Do Not Use 
Offsite 
Facility 

Overall 
Percentage 
Accurately 
Predicted 

VAR 0.000 Final  
Model FDT 0.000 

0.730 80.2e 40.0 63.0 

Ground travel time 0.000 
Distance from airport 0.000 

Alternate 
Model 1 

Access mode 0.000 

0.000 92.1 92.6 92.3 

rgroundtraveltime 0.000 
rimpedance 0.000 

Alternate 
Model 2 

runcertainty 0.000 

0.000 74.7 92.8 84.4 

VAR 0.000 
FDT 0.000 

Alternate 
Model 3 

COST 0.556 

0.091 90.7 21.5 66.3 

COST 0.822 Alternate 
Model 4 VAR 0.000 

0.000 82.9 32.5 65.1 

COST 0.332 Alternate 
Model 5 FDT 0.000 

0.000 100.0 0.00 64.8 

FDT 0.000 
VAR 0.048 

Alternate 
Model 6 

CITY 1.000 

0.966 100.0 63.4 87.1 

FDT 0.000 Alternate 
Model 7 CITY 1.000 

1.000 100.0 63.4 87.1 

VAR 0.072 Alternate 
Model 8 CITY 1.000 

1.000 100.0 63.4 87.1 

FDT 0.000 
VAR 0.048 
COST 0.131 

Alternate 
Model 9 

CITY 1.000 

0.960 100.0 63.7 87.2 

aCOST = out-of-pocket dollars spent to access airport such as parking, fuel, tolls, transit or taxi fares; VAR 
= variability of passenger’s travel time to access airport (5, 15, 30, 45 min, or higher); FDT = flight departure time 
(8 A.M.-10:30 A.M., 10:30 A.M.-1:00 P.M., 1:00 P.M.-3:30 P.M., 3:30 P.M.-6:00 P.M., or later); rgroundtraveltime 
= resistance of ground travel time of individual passengers while accessing airport as determined by airport access 
quality model; rimpedance = resistance of impedance of individual passengers while accessing airport as determined by 
airport access quality model; runcertainty =  resistance of uncertainty of individual passengers while accessing airport as 
determined by airport access quality model. 
bTest 1: determines significance of predictor variables; p < 0.05 is desired. 
cTest 2: determines goodness of fit using H-L test; p > 0.05 is desired. 
dTest 3: determines percentage prediction accuracy using classification tables where all probabilities less than 0.5 
are classified as non-users of offsite airport facility and those greater than 0.5 are classified as users of an offsite 
airport facility 
eExample: 809 respondents used offsite facility to access airport.  Model predicted that 649 used terminal; thus 
percentage accurately predicted was (649/809)*100 = 80.2%. 
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 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− offsite

offsite

P1
P

ln = -1.127*VAR(1) – 0.14*VAR(2) –  0.015*VAR(3) + 0.029*VAR(4) 

 – 0.113*VAR(5) –  0.774*FDT(1) – 0.512*FDT(2) – 0.945*FDT(3) – 1.22*FDT(4) 
 
 – 1.467*FDT(5) + 1.534                                                                                           (Eq. 16) 
 
where 
 

offsiteP  = probability of a passenger using an offsite facility 
 

FDT was based on Question 1 (Appendices A and B) as follows: FDT(1): FDT is before 
8 A.M.; FDT(2) is 8:00-10:30 A.M.; FDT(3) is 10:30 A.M.-1:00 P.M.; FDT(4) is 1-3:30 
P.M.; FDT(5) is 3:30-6:00 P.M. 

 
Variability (VAR) was based on Question 6 (Appendix A) and Question 7 (Appendix B) 
as follows: VAR(1):  ground travel time has less than 5 min of perceived variability; 
VAR(2): 15 min; VAR(3): 30 min; VAR(4): 45 min; VAR(5): 1 hr or more of perceived 
variability 

 
 
Table 29 shows the significance and the 95% confidence intervals for the variables in Eq. 

16. 
Table 29.  Binary Logit Model Output 

95% Confidence Interval for Exp(B) Variables Used 
in Model 

 
B 

 
Significance 

 
Exp(B) Lower Upper 

VARa   .000       
VAR(1) -1.127 .000 .324 .230 .455 
VAR(2) -.140 .373 .869 .639 1.183 
VAR(3) -.015 .944 .985 .655 1.482 
VAR(4) .029 .928 1.030 .546 1.942 
VAR(5) -.113 .778 .893 .407 1.958 
FDTb   .000       
FDT(1) -.774 .006 .461 .264 .805 
FDT(2) -.512 .041 .599 .367 .979 
FDT(3) -.945 .000 .389 .242 .624 
FDT(4) -1.220 .000 .295 .181 .482 
FDT(5) -1.467 .000 .231 .141 .378 

  
  
 
  

Constant 1.534 .000 4.637     
aPerceived variability in ground travel time coded as follows. VAR(1): less than 5 min; VAR(2): 15 min; 
VAR(3): 30 min; VAR(4): 45 min; VAR(5): 1 hour or more of perceived variability. 
bScheduled flight departure time coded as follows: FDT(1): prior to 8 A.M.; FDT(2): 8:00-10:30 A.M.; 
FDT(3): 10:30 A.M.-1:00 P.M.; FDT(4): 1:00-3:30 P.M.; FDT(5): 3:30-6:00 P.M. 

 
Results of Test 2: Goodness of Fit 
 

A goodness-of-fit test was conducted to determine whether there was a statistically 
significant difference between the observed values and the values predicted by the model.  The 
Hosmer and Lemeshow (H-L) test was used (Hosmer and Lemeshow, 2000).  If the H-L test 
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statistic is greater than 0.05, the null hypothesis that there is no difference between observed and 
predicted values is not rejected and, by extension, the model is appropriate for the data set.  
Table 30 indicates that there was no difference between observed and predicted values.  

 
Appendix D discusses how other tests of significance may be used instead of the H-L 

test.  
 

Table 30.  Hosmer and Lemeshow Test 

Chi-square 
Degrees of 
Freedom Significance 

5.253 8 0.73 
 
Results of Test 3: Prediction Accuracy with Training Data 
 

Table 31 shows that the model predicted the correct response for 63% of the cases.  There 
were 605 (= 242 + 363) respondents who indicated they would not use an offsite facility and 809 
(= 160 + 649) respondents who indicated they would use an offsite facility.  Application of Eq. 
16 showed that of the 605 respondents not willing to use an offsite facility, 242 were correctly 
predicted as not using such a facility whereas 363 were incorrectly predicted as using it.  
Similarly, of the 809 respondents that were using an offsite facility, 649 responses were correctly 
predicted as using it and 160 were incorrectly predicted as not using it.   
 

Table 31.  Prediction Accuracy with Training Data 
Predicted 

Y 
 
 

Observed Will not use offsite facility Will use offsite facility 
% Error 

Will not use offsite facility 242 363 60% Y 
Will use offsite facility 160 649 20% 

Overall % error   37% 
 

Eq. 16 predicts the odds of a passenger using an offsite airport facility, given his or her 
flight departure time and perceived variability in ground travel time.  For example, one may 
assume a passenger with these characteristics: 
 

1. A 30-min variability is perceived in ground travel time (hence, VAR = 3). 
2. The flight is scheduled to depart at 10:00 A.M. (hence, FDT = 2). 

 
Accordingly, Eq. 16 may be computed as:  
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− offsite

offsite

P1
P

log = -0.015-0.512+1.534 

The odds prediction equation is 
 

ODDS = 
offsite

offsite

P1
P
−

= exp (–0.015 – 0.512 + 1.534) = 2.737 
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Thus, passengers with these characteristics are 2.737 times more likely to use an offsite airport 
facility than not to use it.  
 

The odds can be easily converted into a probability.  For this group of passengers, 
 

73.0
737.21

737.2
ODDS1

ODDSPoffsite =
+

=
+

=  

 
Thus, this model predicted that 73% of passengers with these characteristics (VAR = 3 

and FDT = 2) are willing to use an offsite airport facility.  Eq. 16 may be repeated to determine 
the likelihood of each market segment using an offsite airport facility.  For example, Table 32 
shows that for passengers whose flight departure time is before 8 A.M. (FDT = 1) and whose 
perceived variability is less than 5 min (VAR = 1), 41% are likely to use an offsite airport 
facility.  If this probability were applied to a single passenger, because the expected frequency 
would be less than 0.5, the result suggests that a single passenger whose FDT = 1 and VAR = 1 
would not be expected to use the facility.   
 

Table 32 reveals that for a given variability range, the probability of using an offsite 
airport facility increases up to FDT = 2, after which it decreases.  For a given flight departure 
time range, the probability of using an offsite airport facility increases up to VAR = 4, after 
which it decreases.  Thus, passengers with VAR = 4 and FDT = 2 have the highest probability of 
using an offsite airport facility, and passengers with VAR = 1 and FDT = 5 have the lowest such 
probability.  Using the 95% confidence interval values shown in Table 29, confidence intervals 
for the probabilities shown in Table 32 were developed.  Figure 6 depicts the confidence interval 
for the market segment FDT = 2 and VAR = 4 and the interval for the market segment FDT = 5 
and VAR = 1.  There is no overlap between the two market segments, suggesting that there is a 
significant difference between them.  
 

As shown in Appendix E, when there are more than a couple thousand passengers evenly 
distributed among the cells, the differences in Table 32 are statistically significant.   

 
Table 32.  Probability of Using Offsite Airport Facilities 

Flight Departure Time (FDT)  
Variability 

(VAR) 
1 

(before 8 A.M.) 
2 

(8-10:30 a.m.) 
3 

(10:30 a.m.-1 P.M.) 
4 

(1-3:30 P.M.) 
5 

(3:30-6 P.M.) 
1 (5 min) 41% 47% 37% 31% 26% 
2 (15 min) 65% 71% 61% 54% 48% 
3 (30 min) 68% 73% 64% 57% 51% 
4 (45 min) 69% 74% 65% 58% 52% 
5 (1 hr or more) 66% 71% 62% 55% 49% 
 
Results of Test 4: Prediction Accuracy with Testing Data 
 
 The final model that was chosen in Table 28 and analyzed in Table 32 was based only on 
90% of the data collected for this study.  The remaining 10% of the data, which were not used to 
calibrate the model, comprised the “test” data set.  Table 33 shows the percentage error obtained 
with these data.  Although there is only a 13% error in accurately predicting the usage of an 
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Figure 6.  Confidence Interval for Market Segments 
 

offsite airport facility, there is a 73% error in accurately predicting the non-usage of an offsite 
airport facility.  The overall percentage error in prediction is 42%.  As would be expected, the 
overall percentage error with the testing data set is larger (42% as shown in Table 33) than the 
overall percentage error with the training data set (37% as shown in Table 31). 
 

Table 33.  Prediction Accuracy with Testing Dataa 
Predicted  

 
Observed  

Will not use offsite airport 
facility 

Will use offsite airport 
facility 

Percentage 
error 

Will not use offsite airport 
facility 

20 54 73% 

Will use offsite airport facility 10 67 13% 
Overall percentage error   42% 
aThe test data from Table 33 showed that 20 + 54 = 74 respondents will not use the offsite facility, whereas 10 + 67 
= 77 respondents indicated they will use the offsite facility.  The implication that 77 / (77 + 74) = 51% of 
respondents might use the facility was used in estimating the upper limit of potential emissions reductions for an 
offsite facility located in Richmond as discussed in Volume I of this study (Goswami et al., 2008). 
 
Development and Validation of a Cross-Classification Model  
 
 As an alternative to the binary logit model, a cross-classification model was developed 
using the same two independent variables discussed previously: FDT and perceived variability in 
ground travel time (VAR).  Table 34 shows the percentage of passengers willing to use an offsite 
airport facility for each FDT and VAR combination. 
 

As with the binary logit model, the data had been split into two sets: a training set used 
for calibration and a separate testing data set.  With the testing data, the cross-classification 
model had an absolute percentage error of 52% when predicting the usage of offsite airport  
 

Table 34.  Percentage of Passengers Using Offsite Airport Facilities  
in Specific Market Segments 

Flight Departure Time (FDT) 
 

Variability 
(VAR) 

1 
(before 8 

A.M.) 

2 
(8-10:30 

a.m.) 

3 
(10:30 a.m.-1 

P.M.) 

4 
(1- 3:30 
P.M.) 

5 
(3:30 -6 
P.M.) 

1 (5 min) 34% 39% 43% 32% 27% 
2 (15 min) 62% 71% 57% 56% 55% 
3 (30 min) 77% 79% 52% 68% 58% 
4 (45 min) 75% 92% 56% 50% 50% 
5 (1 hr or more) 100% 33% 63% 67% 17% 
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facilities and an absolute percentage error of 29% when predicting the non-usage of offsite 
airport facilities (see Table 35).  The overall estimated absolute percentage error is 41%, which is 
comparable to the 42% overall absolute percentage error with the logit model. 
 

Table 35.  Comparison of Absolute Percentage Errors Between Models 
 

Passenger Choice 
 

Binary Logit Model 
 

Cross-classification Model 
Will use offsite airport facility 13% 52% 
Will not use offsite airport facility 73% 29% 
Overall 42% 41%a 

aAbsolute percentage error of 41% was calculated by computing total number of incorrect predictions 
divided by total number of correct predictions. 

Model Application: Selection of Promising Zip Codes for Offsite Facility  
 

Tables 32 and 34 show that the logit model and the cross-classification model have 
similar predictions in each market segment in terms of the percentage of passengers who are 
willing to use an offsite facility.  Table 36 shows the difference in predicted percentages between 
the two models (shown in Tables 32 and Table 34) and their sample sizes.  In most cases, the 
differences are less than 10%, and discrepant results tend to occur for those market segments the 
sample size is quite small.  For example, the FDT 1 and VAR 5 market segment shows the 
highest discrepancy in the predicted percentage (34%) and the lowest sample size (n = 1).   

 
To determine the most promising zip codes for locating an offsite facility, a threshold 

probability of 60% may be established.  According to Tables 32 and 34, the market segments that 
have a 60% or higher probability of using an offsite airport facility are as follows: FDT 1, VAR 
2 through VAR 5; FDT 2, VAR 2 through VAR 4; and FDT 3, VAR 5.  Table 37 shows the 
originating zip codes of the air passengers departing from BOS and SFO (the airports that have 
the partial offsite airport facilities) and their corresponding market segments.   
 
 

Table 36.  Difference in Prediction Percentage of Tables 32 and 34 
Flight Departure Time (FDT) 

 
1 

(before 8 A.M.) 

 
2 

(8-10:30 A.M. 

3 
(10:30 A.M. 

-1 P.M.) 

 
4 

(1-3:30 P.M.) 

 
5 

(3:30-6 P.M.) 

  
  
 

Variability 
(VAR)  na Difference n Difference n Difference n Difference n Difference 

1 (5 min) 29 7%b 56 8% 101 6% 50 1% 45 1% 
2 (15 min) 53 3% 106 0% 127 4% 94 2% 76 7% 
3 (30 min) 13 9% 34 6% 31 12% 28 11% 26 7% 
4 (45 min) 4 6% 12 18% 9 9% 4 8% 8 2% 
5 (1 hr or 
more) 

1 34% 3 38% 8 1% 6 12% 6 32% 

aSample size. 
bAbsolute difference between cross-classification and logit model predictions; e.g., difference of 7% is obtained by 
subtracting 34% prediction in corresponding cell in Table 34 (FDT 1 and VAR 1) from 41% prediction in 
corresponding cell in Table 32.  
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Table 37.  Zip Codes with Offsite Airport Facility Usage 
FDT 1a FDT 2a FDT 3a  

 
Airport  VAR 2b VAR 3b VAR 4b VAR 5b VAR 2b VAR 3b VAR 4b VAR 5b 

01701(3c) 02026 02341 02134 - 01701(4) 02421 02338 01701 02767 02188 02770(2) 
01760(2) 01887 02368 02126   02043(3) 01876 01949 02351 02770 02045 01069 
01588(2) 02343 01852 03053   01867(3) 01810 02062 02339 02375 03053   
01778(2) 01450 01776 01721   01776(3) 01830 02081 02767 01460 01803   
02072 01741 01534     01801(2) 03087 02050 01867 02180 02315   
02045 01772 02053     02368(2) 03076 02302 01867 01453 02103   
02301 01746 01702     01886(2) 02180 02842 02050 01702 01752   
02481 01590       01746(2) 02301 02332 02050 01002     
01754         01772(2) 02066 01748 01821 02332     
          02351 01760 01519 01778 01749     
          02188 02493 01742         

BOS 

          01803 01721 01702         
94904(3) 94945 94946 94925 94949 94960(3) 94965(2) 94931 94903 94965 94930 - 
94901(3) 95476       94939(3) 94903(2) 94965 94948 95451 95476   
94946 94925       94941(3) 94701 94947 94941 94901     
94925 94939       94904(3) 91917 94903         
94930 94973       94901(3) 92270 93105         
94925 94937       94949(2) 95476           

SFO 

94941 94903       94957(2)             
BOS = Boston Logan International Airport, SFO = San Francisco International Airport. 
aScheduled flight departure time: FDT(1): before 8 A.M.; FDT(2): 8-10:30 A.M.; FDT(3): 10:30 A.M.-1 P.M.  
bPerceived variability in ground travel time: VAR(2): 15 min; VAR(3): 30 min; VAR(4): 45 min; VAR(5): 1 hr or more. 
cExample:  There were 3 passengers whose flight departure time was prior to 8 A.M. and who perceived variability in ground travel time to airport to be 15 min.
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Table 37 shows that the model predicts the zip codes 01701 for BOS and 94901 for SFO 
as the ones to have passengers with a high probability of using an offsite airport facility.  In 
addition, as shown previously in Table 11, the same zip codes, i.e., 01701 and 94901 for BOS 
and SFO, respectively, are among the top three that generate a high percentage of air passengers.  
In addition, the Framingham offsite airport facility of the Logan Express service is located in the 
zip code 01701 and the San Rafael offsite airport facility of the Marin Airporter service is 
located in the zip code 94901.  Thus, the following are true for zip codes 01701 and 94901: 
 

• According to the survey results, they generate a high percentage of air passengers.  
• They are predicted by the offsite facility demand model to be zip codes likely to 

generate passengers that would use an offsite airport facility.  
• They are the locations of an existing offsite airport facility.  

 
Based on the approach used for constructing Table 37, Table 38 shows the promising zip 

codes for RIC and BWI, which are two airports that are candidates for a future offsite airport 
facility because of their low airport access quality.   

 
Table 38 shows that in the case of RIC, two zip codes, 23220 and 23112, fall in the 

market segment that has been predicted to have probable users of an offsite airport facility.  
Returning to Table 11, these zip codes are two of the top three air passenger-generating zip 
codes.  Thus, based on the example of the zip code 01701 (having an offsite airport facility for 
BOS), the model suggests that zip codes 23220 (Richmond, Virginia) and 23112 (Midlothian, 
Virginia) could be considered as possible locations for offsite airport facilities when only 
demand characteristics are considered.   

 
 

Table 38.  Market Segments and Originating Zip Codes 
FDT 1a FDT 2a FDT 3a  

Airport  VAR 2b VAR 3b VAR 4b VAR 5b VAR 2b VAR 3b VAR 4b VAR 5b 
23832 - - - 23238 (2c) 23236 -  
23803 - - - 23220 (2) 23002 -  
 - - - 23112   -  
 - - - 23060   -  
 - - - 23059   -  
 - - - 23237   -  
 - - - 23225   -  
 - - - 23233   -  

RIC 

 - - - 23235   -  
 - - - 21218 21042 - 23708 
 - - - 28215   - 22153 
 - - - 20878   - 20744 

BWI 

 - - - 21093   - 21801 
RIC = Richmond International Airport, BWI = Baltimore/Washington International Thurgood Marshall 
Airport. 
aScheduled flight departure time:  FDT(1): before 8 A.M.; FDT(2): 8-10:30 A.M.; FDT(3): 10:30 A.M.-1 
P.M.  
bPerceived variability in ground travel time: VAR(2): 15 min; VAR(3): 30 min; VAR(4): 45 min; VAR(5):  
1 hr or more. 
cThere were 2 passengers whose flight departure time was between 8-10:30 A.M. and who perceived 
variability in ground travel time to airport to be 15 min. 
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DISCUSSION: 
APPLYING THE SEQUENTIAL MODELS TO OTHER LOCATIONS 

 
 Tasks 3 and 4 described the development of two classes of models to determine the 
demand of offsite facilities: airport access quality models and offsite facility usage models.  This 
study demonstrated how to apply these models in a sequential fashion and how these models 
may be considered at other locations.  Planners who desire to use this approach to investigate 
passenger demand for an offsite facility should first use the airport access quality model to 
determine the current total resistance to airport access and then apply the offsite facility usage 
model to calculate the probability of passengers who would be willing to use an offsite facility. 
 

For example, one may consider just two airports: CHO and RIC.  The airport access 
quality models in this study suggest that CHO currently has the lowest total resistance to airport 
access and hence would be the least likely candidate for an offsite facility.  By contrast, the 
airport access quality models in this report suggest that RIC has higher resistance and thus is a 
more likely candidate for an offsite facility.  The offsite facility usage model may then be used at 
RIC to determine the probability that certain market segments of passengers would be willing to 
use a facility.  This model showed that those passengers with high ground travel time variability 
and flight departure times between 8 and 10:30 A.M. are promising candidates. 
 

The scope of this methodology is limited to demand estimation.  Thus, a next step with a 
promising airport such as RIC is to determine economic and technical feasibility.  Thus, factors 
such as impact on airport parking revenue and the provision of transportation services would 
need to be considered as part of a site-specific study at a given airport such as RIC. 
 
 
 

CONCLUSIONS 
 
• Total destination airport travel time was much higher than average flight time.  The 1,700 

surveys at six airports revealed that average flight time was only 52% of the total destination 
airport travel time.  The average flight time varied from 2 hr 32 min to 5 hr 55 min, whereas 
the average destination airport travel time varied from 4 hr 44 min to 9 hr 2 min. 

 
• Non-airport activity time is the largest proportion of pre-flight time.  The 652 surveys 

obtained from four airports where passengers accessed the airport directly suggest that of the 
2 hr 31 min average pre-flight time, passengers have an average non-airport activity time of 1 
hr 47 min.  The average total processing time for passengers to check in was slightly greater 
than 7 min, of which they spent an average of slightly less than 4 min waiting in the queue 
and a comparable amount of time at the check-in counter.  The passengers also spent an 
average of 4 min at the security clearance queue, and their average ground travel time to the 
airport was 38 min.     

 
• Processing times at check-in counters show high variability but small values.  A total of 

1,432 observations at the check-in counters of four airports showed that the average 
processing time was 7 min 25 sec, with a range of 4 min at CHO and 12 min 31 sec at ORF.  
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Despite its small magnitude, this processing time shows high variability.  The coefficient of 
variation of the processing time varied from 71% at BWI to 104% at ORF.   

 
• Airport access quality models suggest RIC and BWI have a higher resistance of airport 

access as compared to CHO and ORF.  Models were developed to determine the difficulty of 
access trip to the airport, where resistance of airport access is based on access cost, 
processing time at check-in counters, number of impedances encountered by passengers, 
ground travel time, and perceived variability of ground travel time.  The models suggested 
that total resistance of access at CHO (a small airport in a less urban area) was lowest, 
whereas the total resistance of access for BWI and RIC (larger airports in more urban areas) 
was higher.  Because of their high resistance of airport access, RIC and BWI are likely more 
suitable for an offsite airport facility.   

 
• Survey data suggest there may be some demand for offsite facilities.  The survey data 

indicated that 68% of passengers who traveled directly to the airport were willing to use an 
offsite airport facility if it were available and if it improved the access trip in some way.  Of 
the passengers who currently used an offsite facility, 70% expressed interest in expanded 
services such as baggage and passenger check in. 

 
• Passengers with a scheduled flight departure time between 8:00 and 10:30 A.M. and a 

perceived variability in ground travel time (VAR) of 45 min appear likely to use offsite 
facilities.  The offsite facility usage model predicted that passengers whose FDT was 
between 8:00 A.M. and 10:30 A.M. and whose perceived variability in ground travel time 
was 45 min had the highest probability of using an offsite airport facility (74%).  By contrast, 
the same model predicted that the passengers having an FDT between 3:30 P.M. and 6:00 
P.M. and a perceived variability in ground travel time of 5 min had the lowest probability of 
using an offsite airport facility (26%). 

 
• The cross-classification technique has promise for the airport access quality models and the 

offsite facility usage models.  For the airport access quality models, the linear regression 
method gave unreliable results; only the cross-classification approach was useful.  For the 
offsite facility usage models, the binary logit and cross-classification approaches were both 
useful and had a similar prediction accuracy (42% error for the binary logit approach and 
41% error for the cross classification approach). 

 
 
 

RECOMMENDATIONS 
 
 No single entity is charged with implementing these recommendations as airport offsite 
passenger service facilities affect two separate transportation modes. Recommendations 1 and 2  
apply to members of the research community who can support the development of such facilities.  
Recommendations 3 and 4  apply to state or local planners who are interested in intermodal 
transportation facilities. 
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1. The airport access quality model should be used to develop a total resistance for the 
access to airports based on parameters such as impedance, access cost, ground travel 
time, processing time, and variability.  An offsite airport facility should be further 
considered if an airport’s resistance is high. 

 
2. The cross-classification technique, rather than the linear regression technique, 

should be used to determine the resistance of access trip at airports.  Both techniques 
were tested within the context of the airport access quality model, but only the cross-
classification technique gave reliable results.   

 
3. If an offsite airport facility is considered, it should be targeted at specific market 

segments.  For example, the results of the binary logit offsite airport facility usage 
model developed in this study suggests that offsite airport facilities are more likely to 
be used by passengers who meet two criteria.  These are (1) air passengers with a 
high perceived variability in ground travel time and (2) a scheduled flight departure 
time during the morning rush hour.  

 
4. If an offsite airport facility is to be considered at a given airport, demand 

characteristics should be one criterion that is used to identify promising locations in 
a given metropolitan area.  For example, this study found that zip codes 23220 and 
23112 are candidate locations for offsite airport facilities that would serve RIC.  The 
reason is that according to the airport access model, RIC has a lowest resistance score 
(relative to more rural airports in Virginia), and according to the offsite airport facility 
usage model, passengers having the zip codes 23220 and 23112 as their origin have a 
higher probability of using an offsite airport facility than passengers without those 
characteristics.   
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APPENDIX A 
 
QUESTIONNAIRE DISTRIBUTED AT AIRPORTS WITHOUT OFFSITE FACILITIES*  
 
 
1. What is your flight’s scheduled departure time__________________ AM/PM and scheduled arrival time (at 

final destination) __________________ AM/PM  
 
2. What time did you reach the airport terminal today? __________________ AM/PM 
 
3. How long did it take you to travel (from home, work, hotel, etc.) to get to the airport terminal? ____(minutes) 
 
4. Please provide the location of your origin (home, work, hotel, etc.)  
       __________________________________street address OR ______zip code and ___________neighborhood   
 
5. How did you get to the airport today? (include all applicable) 
       __Drove personal automobile and parked             __Hired a taxicab 
       __Received a ride to the airport (from family, colleague, etc)           __Took a bus  
       __Drove a rental vehicle and parked              __Took light rail 

_Other ______________________ (specify)  
 
6. How does the time to reach the terminal vary each time you access the airport? 

__Varies by less than 5 minutes __Varies by 15 minutes    __Varies by 30 minutes 
__Varies by 45 minutes   __Varies by more than 1 hour  __Unknown 

 
7. What is the cost of your flight ticket?  $________________ 
 
8. What was your total cost of travel (from home, work, hotel, etc.) to the terminal? (include all applicable)  

$______Parking    $_______Mileage    $______Transit fare  
$______Taxi fare   $_______Other ____________________ (specify) 
 

9. So far today, how satisfied are you with your trip to the airport? 
_____Very satisfied, and do not want improvements   _______Satisfied, but expect improvements  
_____Not satisfied, and want improvements 

 
10. Would you be willing to check-in at an offsite airport facility* if it was to improve your access to the airport? 

__Yes     __No 
 

If yes, RANK the benefits below, “1” being the most important: 
      __Shorter travel time to the airport terminal   __ Lower costs to get to the airport terminal   

__Shorter waiting time at check-in queue   __Quicker processing times at check-in counters  
__Certainty in access times to the airport                                                                                                                                
__Other _________________________ (specify) 

_____________________________________________________________________________________________ 
Thank you very much for your participation! 
For comments, suggestions, or questions contact Arkopal Goswami, Virginia Transportation Research Council, 530 
Edgemont Road, Charlottesville, VA. 22903 Phone: (434) 293-1907 Fax: (434) 293-1990 
 

*Questionnaire was distributed to passengers inside the terminal at CHO, RIC, ORF, and BWI. 
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APPENDIX B 
 

QUESTIONNAIRE DISTRIBUTED AT AIRPORTS WITH OFFSITE FACILITIES* 
 
 
1. Today’s scheduled flight departure time      ______ AM/PM 
2. Scheduled flight arrival time at destination      ______ AM/PM 
3. Today’s time you reached Marin Airporter terminal   ______ AM/PM 
4. How did you reach Marin Airporter terminal today? (check all that apply)        

__Drove personal auto and parked  __Hired a taxi   
__Received a ride                 __Took a bus   __Other______________ 

 
5. What is the zip code of your origin (home, work, hotel, etc.)? ____________ 
6. How long (minutes) did it take you to get to SFO today?  

______from origin to Marin Airporter terminal  ____wait at Marin Airporter terminal 
______from Marin Airporter terminal to SFO 

 
7. How does the total time taken to reach SFO vary each time you access the airport? 

__Varies by less than 5 minutes __Varies by 15 minutes    __Varies by 30 minutes 
__Varies by 45 minutes   __Varies by more than 1 hour  __Unknown 

 
8. What is the round-trip cost of your flight ticket?  $___________    
9. What is your total cost of travel to get to SFO today? $_________ 

(Include all costs:  Marin Airporter fare, parking costs, tolls, etc.) 
 
10. How many pieces of baggage will you be checking-in today? ______ 
 
11. Why did you prefer to take the Marin Airporter rather than going directly to the airport? 

__Shorter travel time to the airport terminal   __ Lower costs to get to the airport terminal 
__Certainty in access times to the airport terminal  __Convenient parking compared to airport  

 
12. When did you first use the Marin Airporter service? 

__Today     __Used earlier ____________ (specify which year) 
 
13. How was your overall experience with the Marin Airporter today? 

__Very poor  __Poor  __Good   __Very good   __Excellent 
 
14. Would future additional services* at Marin Airporter terminal help improve your access to SFO?    

__Yes     __No 
*(In addition to the services already offered, you could receive your boarding pass, and/or be able to check your 
baggage through to your destination airport).  

 
If yes, rank the benefits of such an offsite airport facility, with “1” being the most important: 
__Shorter waiting time at check-in queue  __Quicker processing times at check-in counters  
__Less variability in access times to the airport  __Convenience of checking-in baggage  
__Other _______________________________  
_____________________________________________________________________________________________ 
Contact:  Arkopal Goswami, Virginia Transportation Research Council, 530 Edgemont Road, Charlottesville, VA 
22903 Phone: (434) 293-1907 Fax: (434) 293-1990 
 

*Questionnaire was distributed to passengers using buses providing access to SFO from offsite facilities.  (A similar 
questionnaire was distributed on board buses providing access to BOS from offsite facilities.)   
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APPENDIX C 
 

CROSS-CLASSIFICATION AIRPORT ACCESS QUALITY MODEL RESULTS 
 

Airport 
 

Predicted Resistance Variables (yi) 
 

Resistance 
Values (ri) 

Total Resistance 
(Rtotal) 

 Max 3.00   
Impedance  Min 1.00 0.24 
  Average 1.48   
  Max $31.98  
Access cost  Min $3.26 0.46 
  Average $16.51   
  Max 85.000   
Ground travel time Min 14.583 0.19 
  Average 27.931   
  Max 0.233   
Processing time Min 0.042 0.26 
  Average 0.091   
  Max 11.00   
Uncertainty Min 3.00 0.35 

CHO 

 Average 5.98  

0.29 

  Max 3.00   
Impedance  Min 1.00 0.24 
  Average 1.48   
  Max $31.98  
Access cost  Min $3.26 0.49 
  Average $17.35   
  Max 85.00   
Ground travel time Min 14.58 0.36 
  Average 40.04   
  Max 0.233   
Processing time Min 0.042 0.37 
  Average 0.114   
  Max 11.00   
Uncertainty Min 3.00 0.52 

RIC 
  

  Average 7.19  

0.38 

  Max 3.00   
Impedance  Min 1.00 0.24 
  Average 1.48   
  Max $31.98  
Access cost  Min $3.26 0.56 
  Average $19.29   
  Max 85.00   
Ground travel time Min 14.58 0.28 
  Average 34.62   
  Max 0.233   
Processing time Min 0.042 0.37 
  Average 0.112   
  Max 11.00   
Uncertainty Min 3.00 0.46 

ORF 

  Average 6.68  

0.36 
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Airport 
 

Predicted Resistance Variables (yi) 
 

Resistance 
Values (ri) 

Total Resistance 
(Rtotal) 

  Max 3.00   
Impedance  Min 1.00 0.27 
  Average 1.54   
  Max $31.98  
Access cost  Min $3.26 0.59 
  Average $20.14   
  Max 85.00   
Ground travel time Min 14.58 0.42 
  Average 44.17   
  Max 0.233   
Processing time Min 0.042 0.35 
  Average 0.109   
  Max 11.00   
Uncertainty Min 3.00 0.53 

BWI 

  Average 7.23  

0.42 
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APPENDIX D 
 

RATIONALE FOR USING THE HOSMER AND LEMESHOW TEST 
 

Table 28 showed the final model chosen for this study and nine alternative models that 
were considered but not chosen.  For each model, Table 28 gives the corresponding goodness- 
of-fit results and the prediction accuracy.  The Hosmer and Lemeshow (H-L) test is the default 
goodness-of-fit measure provided in the SPSS software package and was used in this report.  
However, SPSS also develops 2X2 classification tables that help determine the percentage 
accuracy of predictions and that can be used to develop an alternative goodness-of-fit measure.  
These two goodness-of-fit measures, i.e., the one based on the H-L test and the other based on 
the 2x2 chi-square test—may give contradictory results.  
 

This contradiction occurred when Models 1 and 2 in Table 28 were considered.  They 
failed the H-L test (and hence were not selected as the final model, despite their high percentage 
accuracy of prediction).  However, a 2x2 chi-square test showed that there is no significant 
difference between the observed and predicted values.  This appendix shows the calculations 
necessary to perform the H-L test and the 2x2 chi-square test and why the former was used to 
select the most appropriate model in Tables 28 and 32. 
 

Model 1 was developed using three variables: ground travel time, distance from airport, 
and access mode.  As reflected in Table D1, access mode is a binary vector, where each record 
has a value of “1” for either the AccessMode(1) index or the AccessMode(2) index and a value 
of “0” for the other index. 

 
The H-L test revealed that there was a significant difference between observed and 

predicted values (see Table D2). 
 
The H-L test is performed by dividing the predicted probabilities into deciles and then 

computing a Pearson chi-square statistic that compares the predicted frequencies to the observed 
 

Table D1.  Variables in Model 1 
95.0% Confidence 

Interval for EXP(B) 
Variables B Significance Exp(B) Lower Upper 

  Ground Travel Time -.109 .000 .897 .870 .924 
  DistancefromAirport .160 .000 1.173 1.148 1.200 
  AccessMode  .000    
  AccessMode(1) -.106 .771 .900 .441 1.833 
  AccessMode(2) 1.594 .000 4.922 2.381 10.173 
  Constant -5.780 .000 .003   

 
 

Table D-2.  Hosmer and Lemeshow Test for Model 1 

Chi-square 
Degrees of 
Freedom Significance 

190.100 8 .000 
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frequencies, shown in Table D3.  The 10 ordered categories are created based on their estimated 
probability; those with estimated probability below 0.1 form one category, those with estimated 
probability between 0.1 and 0.2 form a second category, and so on such that those with 
probability 0.9 to 1.0 form the tenth category.  Each of these categories is further divided into 
two groups based on the actual observed outcome variable, which in this case is success or 
failure.  The expected frequencies for each of the cells are obtained from the model. 
 

The H-L goodness-of-fit statistic is then calculated from the frequencies in Table D3 
using Eq. D-1. 
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where 
 

nj = Number of observations in the jth group 
Oj = ∑

i
ijy  = observed number of cases in the jth group 

Ej = ∑
i

ijp̂ = expected number of cases in the jth group.  

A comparison of observed and expected frequencies within each decile in Table D3 
shows that observed and expected frequencies are similar in most cases with one exception: the 
tenth decile.  That discrepancy is reflected in the high C value, shown in Table D3 as 174.52.  
The reader should note that the sum of all the C-values in Table D3 is 189.7, which is similar to 
the value of 190.1 as shown in Table D-2.   

 
 

Table D3.  Contingency Table for Hosmer-Lemeshow Test 

Y = 0 Y = 1 Total 

Hosmer-
Lemeshow 

Statistic 
 Observed Expected Observed Expected nj C 

1 81 80.447 0 .553 81 0.56 
2 81 79.401 0 1.599 81 1.63 
3 79 76.907 2 4.093 81 1.28 
4 75 71.554 6 9.446 81 1.42 
5 57 55.788 24 25.212 81 0.08 
6 12 24.699 69 56.301 81 9.39 
7 8 9.383 73 71.617 81 0.23 
8 4 3.766 77 77.234 81 0.02 
9 2 .967 79 80.033 81 1.12 

Deciles 

10 4 .088 77 80.912 81 174.52 
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The alternate 2x2 chi-square test for goodness of fit is conducted using the classification 
table (Table D4) developed for the model.  The model also shows a high percentage prediction 
accuracy of 92.3%. 

 
This high p-value, shown in Table D-5, suggests that there is no significant difference 

between the observed and the expected values, thus suggesting a good fit.   Further, a 2x2 chi-
square test (Table D6) performed on the selected model (based on Table 31) shows that there is a 
significant difference between observed and expected values, despite passing the H-L test (Table 
30).  

 
Thus the selection of Alternative Model 1 is supported on the basis of the 2x2 chi-square 

goodness of fit (Table D5) along with the high percentage prediction accuracy (Table D4), 
whereas the selection of the Final Model is supported by the H-L test (Table 30) along with 
63.0% percentage prediction accuracy (Table 31).  Thus, one might ask why the selected model 
was chosen since it failed the 2x2 chi-square test and had a lower percentage prediction error 
than Alternative Model 1.  
 

The H-L test was chosen instead of the 2x2 chi-square test because the former measures 
the robustness of the model by predicting precise numeric probabilities of offsite facility usage.   

 
Table D4.  Logit Classification for Model 1 

Predicted 

Y 
Observed 

  
  

Will not 
use offsite 
facility 

Will use 
offsite 
facility 

Percentage 
Correct 

Will not use offsite 
facility 373 30 92.6 Y 

 Will use offsite 
facility 32 375 92.1 

Overall Percentage   92.3 
 

Table D-5.  2X2 Chi-square Test for Model 1   
Actual Values Expected Values   

Passenger Choice Predicted Actual Predicted Actual   
Will not use offsite facility 403 405 404 404   
Will use offsite facility 407 405 406 406   
  Chi-square test p-value =  0.921 

 
Table D6.  2x2 Chi-square Test for Final Selected Model 

Actual Values Expected Values   
Passenger Choice Predicted Actual Predicted Actual   

Will not use offsite facility 605 402 504 504   
Will use offsite facility 809 1012 911 911   

  Chi-square test p-value =  0.000 
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That is, the 2x2 chi-square test determines only whether a passenger would use an offsite 
airport facility or not, reflected as a cut-off value chosen as 0.5.  Thus, if the estimated 
probability is greater than 0.5, the 2x2 chi-square test presumes the expected value is 1 (i.e., the 
passenger will use an offsite airport facility).  Similarly, if the probability is less than 0.5, the test 
sets the expected value to 0 (i.e., the passenger will not use an offsite airport facility).  Thus, 
although there may be little difference between a probability of 0.48 and 0.52, the use of an 0.5 
value as a boundary would classify these two individuals as completely different.   
 

As an illustration, Table D7 shows four boundary values: 0.5, 0.52, 0.55, and 0.60.  
Changing these boundary values could yield different chi-square test results.  In fact, a boundary 
value of 0.55 shows no significant difference between observed and predicted values. 

 
 Thus, the p-value derived from such classification tables is sensitive to the assumption 
that 0.50 represents an appropriate boundary condition for willingness to use an offsite facility.  
Because the H-L test does not appear to be sensitive to this boundary condition, it was chosen as 
the criterion for selecting models in Table 32. 

 
 

Table D7.  Cutoff value vs. Significance 
Cutoff Value 2x2 Chi-square Test p-value H-L Test p-value 

0.50 < 0.0001 0.73 
0.52 < 0.0001 0.73 
0.55 0.82 0.73 
0.60 < 0.0001 0.73 
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APPENDIX E 
 

STATISTICALLY SIGNIFICANT DIFFERENCES IN NUMBER OF PASSENGERS 
WILLING TO USE AN OFFSITE FACILITY 

 
Figure 6 in the body of the report illustrates how to detect statistically significant 

differences among the percentage of passengers willing to use an offsite airport facility.  
However, Figure 6 alone does not indicate statistically significant differences among the number 
of passengers willing to use an offsite airport facility.  Whether there is a statistically significant 
difference in the number of passengers for different cells in Table 32 depends, in part, on the size 
of the sample of passengers under consideration.  Setting aside statistical considerations, one 
may consider, for example, the first two percentages shown in Table 32: 41% and 47%.  For a 
sample of five passengers, these two percentages yield the same result: two passengers who use 
the offsite airport facility.  For a sample of 5,000 passengers, these two percentages yield 
different results of (41%)*(5,000) = 2,050 passengers and (47%)*(5,000) = 2,350 passengers, 
respectively.   
 

Applying Table 32 to Market of 250 Total Passengers 
 

A chi-square test may be used to detect the sample size for which the percentages in 
Table 32 yield a statistically significant difference.  For example, if the sample size is 10 
passengers in each of the 25 market segments (cells) of Table 32, the upper left cell (VAR 1, 
FDT 1) suggests (41%)(10) = 4.1 passengers who will use the offsite airport facility, whereas the 
next cell to the right (VAR 1, FDT 2) suggests (47%)(10) = 4.7 passengers using the offsite 
airport facility, and so forth, with the bottom right cell (VAR 5, FDT 5) suggesting (49%)(10) 
= 4.9 passengers using the offsite airport facility.  Summing all 25 values for each cell yields a 
total of 141.5 passengers using the offsite airport facility, with an average value of 141.5/25 
= 5.66 passengers per cell.  Eq. E1 yields a test statistic Q, which indicates the extent to which 
these 25 individual cell values (4.1, 4.7, 4.9, and so forth) deviate from the average cell value of 
5.66.   
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The variable Q in Eq. E1 has a chi-square distribution with 24 degrees of freedom such 

that the 95th percentile of this distribution is 36.4.  This fact serves as the basis of the chi-square 
test: since Q as computed from Eq. E1 is less than the 95th percentile value of 36.4, one cannot 
say that there is a statistically significant difference among the number of passengers for each 
individual cell in Table 32 who will use the offsite airport facility.  In short, if the sample size is 
10 persons per cell (or a total of 250 passengers), there is no significant difference among the 
number of passengers who will use the offsite airport facility for each of the 25 market segments 
shown in Table 32. 
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Applying Table 32 to Market of 2,225 Total Passengers 
 

As the sample size, or number of passengers per cell, increases, so does the value of Q.  
The point at which Q exceeds the 95th percentile value of 36.4 is when there are 89 passengers 
per cell (or 25 x 89 = 2,225 total passengers considering the use of the offsite airport facility).  
With 89 passengers per cell, application of Eq. E1 yields 36.5, which exceeds the threshold value 
of 36.4. 
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 Thus, with a sample of at least 2,225 passengers, evenly distributed among the cells, there 
will be a statistically significant difference in the number of passengers willing to use the offsite 
airport facility.  One practical implication is that based only on the percentages in Table 32 and 
assuming the same number of passengers in each market segment, the sample size must be at 
least 2,225 in order for there to be a statistically significant difference in the number of 
passengers using an offsite airport facility for the various market segments. 
 
 

Comparing Binary Logit Model and Cross-Classification Model 
 

The cross-classification results of Table 34 showed greater variation than the binary logit 
results of Table 32.  A chi-square test shows that a sample size of 33 passengers per cell (for a 
total sample of 33 x 25 = 825 passengers) will yield statistically significant differences in the 
number of passengers using the offsite airport facility.  Table 32 required a larger sample size of 
89 passengers per cell or a total of 2,225 passengers. 
 
 

A Caveat to Using Eq. E1 
 
 This discussion presumed the same number of passengers per cell.  However, at the 
airports studied, there were different numbers of passengers per cell; e.g., as was shown in Table 
36, there were 29 passengers in the VAR 1, FDT 1 market segment but 56 passengers in the 
VAR 1, FDT 2 market segment.  When the different numbers of passengers are taken into 
account in this fashion, the chi-square test for the binary logit model in Table 32 shows a 
statistically significant difference with a sample size of at least 78 total passengers.   
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